Properties

Label 6.6.300125.1-71.6-a1
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{5}+a^{4}+14a^{3}+4a^{2}-10a-2\right){x}{y}+\left(a^{5}-a^{4}-6a^{3}+a^{2}+3a\right){y}={x}^{3}+\left(-3a^{5}+2a^{4}+20a^{3}+3a^{2}-13a-1\right){x}^{2}+\left(-a^{5}+20a^{4}-20a^{3}-104a^{2}+46a+16\right){x}-403a^{5}+171a^{4}+2816a^{3}+961a^{2}-1694a-488\)
sage: E = EllipticCurve([K([-2,-10,4,14,1,-2]),K([-1,-13,3,20,2,-3]),K([0,3,1,-6,-1,1]),K([16,46,-104,-20,20,-1]),K([-488,-1694,961,2816,171,-403])])
 
gp: E = ellinit([Polrev([-2,-10,4,14,1,-2]),Polrev([-1,-13,3,20,2,-3]),Polrev([0,3,1,-6,-1,1]),Polrev([16,46,-104,-20,20,-1]),Polrev([-488,-1694,961,2816,171,-403])], K);
 
magma: E := EllipticCurve([K![-2,-10,4,14,1,-2],K![-1,-13,3,20,2,-3],K![0,3,1,-6,-1,1],K![16,46,-104,-20,20,-1],K![-488,-1694,961,2816,171,-403]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+a^3+6a^2-a-4)\) = \((-a^4+a^3+6a^2-a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5957a^5+2126a^4+42339a^3+16177a^2-26841a-6042)\) = \((-a^4+a^3+6a^2-a-4)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -3255243551009881201 \) = \(-71^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{168897361086877089738292772}{3255243551009881201} a^{5} + \frac{36590815305412598961751628}{3255243551009881201} a^{4} + \frac{1215010113934663006249461026}{3255243551009881201} a^{3} + \frac{608534409345028127920951294}{3255243551009881201} a^{2} - \frac{728672484398001360842800916}{3255243551009881201} a - \frac{221646481326554190660944727}{3255243551009881201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{31}{4} a^{5} - \frac{7}{4} a^{4} - \frac{227}{4} a^{3} - \frac{107}{4} a^{2} + \frac{163}{4} a + 11 : \frac{71}{8} a^{5} - \frac{15}{8} a^{4} - \frac{521}{8} a^{3} - \frac{251}{8} a^{2} + 44 a + \frac{111}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1348.5051518367487080175587843280379234 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.23075 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+6a^2-a-4)\) \(71\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.6-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.