Properties

Label 6.6.300125.1-71.5-c3
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-a^{4}-6a^{3}+a^{2}+3a\right){x}{y}+\left(-6a^{5}+2a^{4}+43a^{3}+17a^{2}-29a-6\right){y}={x}^{3}+\left(-4a^{5}+30a^{3}+19a^{2}-18a-9\right){x}^{2}+\left(-36a^{5}-3a^{4}+278a^{3}+176a^{2}-156a-75\right){x}+1119a^{5}-361a^{4}-7802a^{3}-3654a^{2}+4623a+1358\)
sage: E = EllipticCurve([K([0,3,1,-6,-1,1]),K([-9,-18,19,30,0,-4]),K([-6,-29,17,43,2,-6]),K([-75,-156,176,278,-3,-36]),K([1358,4623,-3654,-7802,-361,1119])])
 
gp: E = ellinit([Polrev([0,3,1,-6,-1,1]),Polrev([-9,-18,19,30,0,-4]),Polrev([-6,-29,17,43,2,-6]),Polrev([-75,-156,176,278,-3,-36]),Polrev([1358,4623,-3654,-7802,-361,1119])], K);
 
magma: E := EllipticCurve([K![0,3,1,-6,-1,1],K![-9,-18,19,30,0,-4],K![-6,-29,17,43,2,-6],K![-75,-156,176,278,-3,-36],K![1358,4623,-3654,-7802,-361,1119]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-7a^5+2a^4+50a^3+22a^2-30a-10)\) = \((-7a^5+2a^4+50a^3+22a^2-30a-10)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^4-8a^3-25a^2+11a+12)\) = \((-7a^5+2a^4+50a^3+22a^2-30a-10)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -357911 \) = \(-71^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{235353321428599978}{357911} a^{5} + \frac{580741577725442818}{357911} a^{4} + \frac{1162430939297012415}{357911} a^{3} - \frac{1879545228122345414}{357911} a^{2} + \frac{264656034786687147}{357911} a + \frac{239407872830503392}{357911} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-13 a^{5} + 3 a^{4} + 92 a^{3} + 49 a^{2} - 55 a - 19 : 3 a^{5} + a^{4} - 25 a^{3} - 15 a^{2} + 19 a + 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 34.907982152988347661509028368625290501 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.29032 \)
Analytic order of Ш: \( 81 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-7a^5+2a^4+50a^3+22a^2-30a-10)\) \(71\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.5-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.