Properties

Label 6.6.300125.1-71.4-c4
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-3a^{5}+23a^{3}+14a^{2}-16a-6\right){x}{y}+\left(a^{5}-7a^{3}-5a^{2}+2a+3\right){y}={x}^{3}+\left(-3a^{5}+23a^{3}+14a^{2}-16a-5\right){x}^{2}+\left(-42a^{5}-18a^{4}+323a^{3}+285a^{2}-118a-210\right){x}+84a^{5}-417a^{4}-158a^{3}+1621a^{2}+169a-898\)
sage: E = EllipticCurve([K([-6,-16,14,23,0,-3]),K([-5,-16,14,23,0,-3]),K([3,2,-5,-7,0,1]),K([-210,-118,285,323,-18,-42]),K([-898,169,1621,-158,-417,84])])
 
gp: E = ellinit([Polrev([-6,-16,14,23,0,-3]),Polrev([-5,-16,14,23,0,-3]),Polrev([3,2,-5,-7,0,1]),Polrev([-210,-118,285,323,-18,-42]),Polrev([-898,169,1621,-158,-417,84])], K);
 
magma: E := EllipticCurve([K![-6,-16,14,23,0,-3],K![-5,-16,14,23,0,-3],K![3,2,-5,-7,0,1],K![-210,-118,285,323,-18,-42],K![-898,169,1621,-158,-417,84]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((6a^5-2a^4-43a^3-17a^2+29a+5)\) = \((6a^5-2a^4-43a^3-17a^2+29a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((367a^5-116a^4-2609a^3-1104a^2+1624a+424)\) = \((6a^5-2a^4-43a^3-17a^2+29a+5)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -128100283921 \) = \(-71^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{122473963803363478904490388871087231}{128100283921} a^{5} + \frac{369584216037450793046353949556548449}{128100283921} a^{4} + \frac{111624163999057123131195127865875451}{128100283921} a^{3} - \frac{470167022871026850042855444550668562}{128100283921} a^{2} + \frac{91317277554701667937618786737072378}{128100283921} a + \frac{60701131070426909908677598532343306}{128100283921} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{21}{4} a^{5} - \frac{3}{2} a^{4} + \frac{83}{2} a^{3} + \frac{139}{4} a^{2} - \frac{105}{4} a - \frac{65}{4} : -\frac{13}{2} a^{5} + \frac{3}{8} a^{4} + \frac{385}{8} a^{3} + \frac{191}{8} a^{2} - \frac{215}{8} a - 13 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 17.453991076494173830754514184312645251 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.29032 \)
Analytic order of Ш: \( 81 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((6a^5-2a^4-43a^3-17a^2+29a+5)\) \(71\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.4-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.