Properties

Label 6.6.300125.1-71.4-b2
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-3a^{5}+23a^{3}+14a^{2}-16a-5\right){x}{y}+\left(a^{5}-7a^{3}-5a^{2}+3a+3\right){y}={x}^{3}+\left(-4a^{5}+a^{4}+29a^{3}+14a^{2}-21a-7\right){x}^{2}+\left(23a^{5}-17a^{4}-160a^{3}+3a^{2}+116a-21\right){x}-39a^{5}+37a^{4}+268a^{3}-63a^{2}-227a+94\)
sage: E = EllipticCurve([K([-5,-16,14,23,0,-3]),K([-7,-21,14,29,1,-4]),K([3,3,-5,-7,0,1]),K([-21,116,3,-160,-17,23]),K([94,-227,-63,268,37,-39])])
 
gp: E = ellinit([Polrev([-5,-16,14,23,0,-3]),Polrev([-7,-21,14,29,1,-4]),Polrev([3,3,-5,-7,0,1]),Polrev([-21,116,3,-160,-17,23]),Polrev([94,-227,-63,268,37,-39])], K);
 
magma: E := EllipticCurve([K![-5,-16,14,23,0,-3],K![-7,-21,14,29,1,-4],K![3,3,-5,-7,0,1],K![-21,116,3,-160,-17,23],K![94,-227,-63,268,37,-39]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((6a^5-2a^4-43a^3-17a^2+29a+5)\) = \((6a^5-2a^4-43a^3-17a^2+29a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((18a^5-6a^4-128a^3-51a^2+79a+21)\) = \((6a^5-2a^4-43a^3-17a^2+29a+5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -5041 \) = \(-71^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2634370822463}{5041} a^{5} - \frac{740439838413}{5041} a^{4} - \frac{19177442690303}{5041} a^{3} - \frac{8090290411651}{5041} a^{2} + \frac{13243147162542}{5041} a + \frac{3945985807101}{5041} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a^{5} - a^{4} - 21 a^{3} - 10 a^{2} + 12 a + 8 : -3 a^{5} + 5 a^{4} + 16 a^{3} - 14 a^{2} - a : 1\right)$
Height \(0.0060775655434875208948068184142481340551\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{3}{4} a^{5} + \frac{3}{2} a^{4} + 4 a^{3} - \frac{25}{4} a^{2} - \frac{5}{4} a + \frac{9}{2} : \frac{15}{4} a^{5} - \frac{19}{8} a^{4} - 25 a^{3} - \frac{9}{2} a^{2} + 14 a + \frac{11}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0060775655434875208948068184142481340551 \)
Period: \( 66963.547141587985708763348767015196595 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 2.22863 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((6a^5-2a^4-43a^3-17a^2+29a+5)\) \(71\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.4-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.