Properties

Label 6.6.300125.1-71.3-a2
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{5}-a^{4}-21a^{3}-9a^{2}+13a+4\right){x}{y}+\left(-3a^{5}+23a^{3}+14a^{2}-17a-6\right){y}={x}^{3}+\left(-2a^{5}+a^{4}+14a^{3}+4a^{2}-11a-1\right){x}^{2}+\left(-7a^{5}-2a^{4}+55a^{3}+44a^{2}-32a-25\right){x}+88a^{5}-195a^{4}-254a^{3}+186a^{2}+98a-25\)
sage: E = EllipticCurve([K([4,13,-9,-21,-1,3]),K([-1,-11,4,14,1,-2]),K([-6,-17,14,23,0,-3]),K([-25,-32,44,55,-2,-7]),K([-25,98,186,-254,-195,88])])
 
gp: E = ellinit([Polrev([4,13,-9,-21,-1,3]),Polrev([-1,-11,4,14,1,-2]),Polrev([-6,-17,14,23,0,-3]),Polrev([-25,-32,44,55,-2,-7]),Polrev([-25,98,186,-254,-195,88])], K);
 
magma: E := EllipticCurve([K![4,13,-9,-21,-1,3],K![-1,-11,4,14,1,-2],K![-6,-17,14,23,0,-3],K![-25,-32,44,55,-2,-7],K![-25,98,186,-254,-195,88]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^5+a^4+7a^3-2a^2-7a)\) = \((-a^5+a^4+7a^3-2a^2-7a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-416a^5-570a^4+3584a^3+5465a^2-1377a-1806)\) = \((-a^5+a^4+7a^3-2a^2-7a)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -3255243551009881201 \) = \(-71^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{7245137537592799459668364}{3255243551009881201} a^{5} - \frac{17175864433733831866928686}{3255243551009881201} a^{4} - \frac{29002126063391338539879632}{3255243551009881201} a^{3} + \frac{59053137968044220795988828}{3255243551009881201} a^{2} - \frac{333346305063766203121436}{45848500718449031} a + \frac{536537380242287614298139}{3255243551009881201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{7}{2} a^{5} - a^{4} - \frac{105}{4} a^{3} - \frac{33}{4} a^{2} + \frac{37}{2} a + \frac{9}{4} : -a^{5} + \frac{7}{4} a^{4} + \frac{33}{8} a^{3} - 2 a^{2} - \frac{5}{4} a + \frac{1}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1348.5051518367487080175587843280379234 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.23075 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^5+a^4+7a^3-2a^2-7a)\) \(71\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.3-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.