Properties

Label 6.6.300125.1-71.2-c4
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-4a^{5}+a^{4}+29a^{3}+13a^{2}-18a-4\right){x}{y}+\left(-3a^{5}+23a^{3}+14a^{2}-16a-5\right){y}={x}^{3}+\left(-3a^{5}+23a^{3}+14a^{2}-17a-5\right){x}^{2}+\left(-1192a^{5}+784a^{4}+7943a^{3}+1280a^{2}-4145a-1190\right){x}-14256a^{5}+14083a^{4}+88506a^{3}-11460a^{2}-35243a-7572\)
sage: E = EllipticCurve([K([-4,-18,13,29,1,-4]),K([-5,-17,14,23,0,-3]),K([-5,-16,14,23,0,-3]),K([-1190,-4145,1280,7943,784,-1192]),K([-7572,-35243,-11460,88506,14083,-14256])])
 
gp: E = ellinit([Polrev([-4,-18,13,29,1,-4]),Polrev([-5,-17,14,23,0,-3]),Polrev([-5,-16,14,23,0,-3]),Polrev([-1190,-4145,1280,7943,784,-1192]),Polrev([-7572,-35243,-11460,88506,14083,-14256])], K);
 
magma: E := EllipticCurve([K![-4,-18,13,29,1,-4],K![-5,-17,14,23,0,-3],K![-5,-16,14,23,0,-3],K![-1190,-4145,1280,7943,784,-1192],K![-7572,-35243,-11460,88506,14083,-14256]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+a^4+14a^3+4a^2-9a-4)\) = \((-2a^5+a^4+14a^3+4a^2-9a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((257a^5-48a^4-1851a^3-995a^2+1136a+414)\) = \((-2a^5+a^4+14a^3+4a^2-9a-4)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -128100283921 \) = \(-71^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{13095517607526612645584064951122712336}{128100283921} a^{5} - \frac{3665528766419602968970206427128430838}{128100283921} a^{4} - \frac{1328283723625316342810710439778618405}{1804229351} a^{3} - \frac{41719587011381709944839357304641516914}{128100283921} a^{2} + \frac{61626646160707263603014646395583798619}{128100283921} a + \frac{18185873207131769963818333659583160916}{128100283921} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{69}{2} a^{5} + \frac{69}{4} a^{4} + \frac{957}{4} a^{3} + 64 a^{2} - \frac{585}{4} a - \frac{113}{4} : \frac{93}{8} a^{5} - \frac{43}{8} a^{4} - \frac{653}{8} a^{3} - \frac{45}{2} a^{2} + \frac{407}{8} a + 6 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 17.453991076494173830754514184312645251 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.29032 \)
Analytic order of Ш: \( 81 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+14a^3+4a^2-9a-4)\) \(71\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.2-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.