Properties

Label 6.6.300125.1-71.2-a1
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-8a^{5}+2a^{4}+58a^{3}+27a^{2}-38a-12\right){x}{y}+\left(-4a^{5}+a^{4}+29a^{3}+14a^{2}-19a-7\right){y}={x}^{3}+\left(4a^{5}-a^{4}-29a^{3}-13a^{2}+18a+6\right){x}^{2}+\left(41a^{5}-12a^{4}-293a^{3}-130a^{2}+184a+51\right){x}+48a^{5}-13a^{4}-345a^{3}-156a^{2}+217a+61\)
sage: E = EllipticCurve([K([-12,-38,27,58,2,-8]),K([6,18,-13,-29,-1,4]),K([-7,-19,14,29,1,-4]),K([51,184,-130,-293,-12,41]),K([61,217,-156,-345,-13,48])])
 
gp: E = ellinit([Polrev([-12,-38,27,58,2,-8]),Polrev([6,18,-13,-29,-1,4]),Polrev([-7,-19,14,29,1,-4]),Polrev([51,184,-130,-293,-12,41]),Polrev([61,217,-156,-345,-13,48])], K);
 
magma: E := EllipticCurve([K![-12,-38,27,58,2,-8],K![6,18,-13,-29,-1,4],K![-7,-19,14,29,1,-4],K![51,184,-130,-293,-12,41],K![61,217,-156,-345,-13,48]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^5+a^4+14a^3+4a^2-9a-4)\) = \((-2a^5+a^4+14a^3+4a^2-9a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((74a^5-16a^4-526a^3-265a^2+289a+62)\) = \((-2a^5+a^4+14a^3+4a^2-9a-4)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1804229351 \) = \(-71^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{17404523687941240}{1804229351} a^{5} + \frac{4026524689721292}{1804229351} a^{4} + \frac{1758994589897560}{25411681} a^{3} + \frac{61208366868367188}{1804229351} a^{2} - \frac{74522937160518480}{1804229351} a - \frac{22417514740858745}{1804229351} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{5} + 8 a^{3} + 4 a^{2} - 6 a - 3 : -8 a^{5} + 2 a^{4} + 58 a^{3} + 26 a^{2} - 38 a - 11 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2697.0103036734974160351175686560758469 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.23075 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+14a^3+4a^2-9a-4)\) \(71\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 71.2-a consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.