Properties

Label 6.6.300125.1-71.1-c1
Base field 6.6.300125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.300125.1

Generator \(a\), with minimal polynomial \( x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, -2, 7, 2, -7, -1, 1]))
 
gp: K = nfinit(Polrev([-1, -2, 7, 2, -7, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -2, 7, 2, -7, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{5}-7a^{3}-5a^{2}+3a+3\right){x}{y}+\left(a^{5}-7a^{3}-5a^{2}+3a+2\right){y}={x}^{3}+\left(5a^{5}-a^{4}-36a^{3}-18a^{2}+22a+7\right){x}^{2}+\left(-528a^{5}+146a^{4}+3805a^{3}+1699a^{2}-2485a-750\right){x}-3732a^{5}+1043a^{4}+26879a^{3}+11901a^{2}-17570a-5200\)
sage: E = EllipticCurve([K([3,3,-5,-7,0,1]),K([7,22,-18,-36,-1,5]),K([2,3,-5,-7,0,1]),K([-750,-2485,1699,3805,146,-528]),K([-5200,-17570,11901,26879,1043,-3732])])
 
gp: E = ellinit([Polrev([3,3,-5,-7,0,1]),Polrev([7,22,-18,-36,-1,5]),Polrev([2,3,-5,-7,0,1]),Polrev([-750,-2485,1699,3805,146,-528]),Polrev([-5200,-17570,11901,26879,1043,-3732])], K);
 
magma: E := EllipticCurve([K![3,3,-5,-7,0,1],K![7,22,-18,-36,-1,5],K![2,3,-5,-7,0,1],K![-750,-2485,1699,3805,146,-528],K![-5200,-17570,11901,26879,1043,-3732]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((4a^5-a^4-29a^3-13a^2+18a+3)\) = \((4a^5-a^4-29a^3-13a^2+18a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 71 \) = \(71\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5a^5+a^4+36a^3+18a^2-18a+4)\) = \((4a^5-a^4-29a^3-13a^2+18a+3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -357911 \) = \(-71^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{587708941038435059}{357911} a^{5} - \frac{1265603492393330221}{357911} a^{4} - \frac{2777805214368944418}{357911} a^{3} + \frac{4226938618080494427}{357911} a^{2} - \frac{557463680741173951}{357911} a - \frac{522744849211037800}{357911} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-25 a^{5} + 6 a^{4} + 180 a^{3} + 87 a^{2} - 113 a - 38 : -2 a^{5} + a^{4} + 14 a^{3} + 3 a^{2} - 9 a + 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 34.907982152988347661509028368625290502 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 1.29032 \)
Analytic order of Ш: \( 81 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((4a^5-a^4-29a^3-13a^2+18a+3)\) \(71\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.1-c consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.