Properties

Label 6.6.1241125.1-45.1-b3
Base field 6.6.1241125.1
Conductor norm \( 45 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1241125.1

Generator \(a\), with minimal polynomial \( x^{6} - 7 x^{4} - 2 x^{3} + 11 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 11, -2, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, 7, 11, -2, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 11, -2, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-3a^{5}+a^{4}+20a^{3}-29a-11\right){x}{y}+\left(-a^{5}+a^{4}+7a^{3}-3a^{2}-11a-3\right){y}={x}^{3}+\left(3a^{5}-2a^{4}-20a^{3}+5a^{2}+32a+11\right){x}^{2}+\left(84a^{5}-45a^{4}-565a^{3}+105a^{2}+891a+212\right){x}+298a^{5}-153a^{4}-1998a^{3}+365a^{2}+3103a+667\)
sage: E = EllipticCurve([K([-11,-29,0,20,1,-3]),K([11,32,5,-20,-2,3]),K([-3,-11,-3,7,1,-1]),K([212,891,105,-565,-45,84]),K([667,3103,365,-1998,-153,298])])
 
gp: E = ellinit([Polrev([-11,-29,0,20,1,-3]),Polrev([11,32,5,-20,-2,3]),Polrev([-3,-11,-3,7,1,-1]),Polrev([212,891,105,-565,-45,84]),Polrev([667,3103,365,-1998,-153,298])], K);
 
magma: E := EllipticCurve([K![-11,-29,0,20,1,-3],K![11,32,5,-20,-2,3],K![-3,-11,-3,7,1,-1],K![212,891,105,-565,-45,84],K![667,3103,365,-1998,-153,298]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-6a^3+3a^2+8a+4)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)\cdot(2a^5-a^4-14a^3+2a^2+23a+6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 45 \) = \(5\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7a^5+2a^4+48a^3-a^2-71a-21)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{4}\cdot(2a^5-a^4-14a^3+2a^2+23a+6)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 50625 \) = \(5^{4}\cdot9^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{111388131328}{225} a^{5} + \frac{62867896343}{225} a^{4} + \frac{155339260534}{45} a^{3} - \frac{157390329971}{225} a^{2} - \frac{1225752719447}{225} a - \frac{50545458893}{45} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{9}{4} a^{5} - a^{4} - 15 a^{3} + 2 a^{2} + \frac{91}{4} a + \frac{5}{2} : -\frac{29}{8} a^{5} + \frac{7}{8} a^{4} + \frac{189}{8} a^{3} + \frac{11}{8} a^{2} - \frac{131}{4} a - 12 : 1\right)$ $\left(2 a^{5} - 15 a^{3} + 23 a + 3 : -3 a^{5} + 20 a^{3} + 3 a^{2} - 27 a - 10 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3849.5526445693109051125313105813306236 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.72772 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+13a^3-2a^2-19a-5)\) \(5\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((2a^5-a^4-14a^3+2a^2+23a+6)\) \(9\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 45.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.