Properties

Label 6.6.1241125.1-45.1-b1
Base field 6.6.1241125.1
Conductor norm \( 45 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 6.6.1241125.1

Generator \(a\), with minimal polynomial \( x^{6} - 7 x^{4} - 2 x^{3} + 11 x^{2} + 7 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 7, 11, -2, -7, 0, 1]))
 
gp: K = nfinit(Polrev([1, 7, 11, -2, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 7, 11, -2, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-4a^{5}+2a^{4}+27a^{3}-4a^{2}-42a-13\right){x}{y}+\left(-3a^{5}+2a^{4}+20a^{3}-5a^{2}-30a-9\right){y}={x}^{3}+\left(a^{5}-7a^{3}-a^{2}+11a+4\right){x}^{2}+\left(686a^{5}-226a^{4}-4542a^{3}+352a^{2}+6572a+1376\right){x}+8264a^{5}-4931a^{4}-57506a^{3}+14498a^{2}+94248a+19342\)
sage: E = EllipticCurve([K([-13,-42,-4,27,2,-4]),K([4,11,-1,-7,0,1]),K([-9,-30,-5,20,2,-3]),K([1376,6572,352,-4542,-226,686]),K([19342,94248,14498,-57506,-4931,8264])])
 
gp: E = ellinit([Polrev([-13,-42,-4,27,2,-4]),Polrev([4,11,-1,-7,0,1]),Polrev([-9,-30,-5,20,2,-3]),Polrev([1376,6572,352,-4542,-226,686]),Polrev([19342,94248,14498,-57506,-4931,8264])], K);
 
magma: E := EllipticCurve([K![-13,-42,-4,27,2,-4],K![4,11,-1,-7,0,1],K![-9,-30,-5,20,2,-3],K![1376,6572,352,-4542,-226,686],K![19342,94248,14498,-57506,-4931,8264]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^5-a^4-6a^3+3a^2+8a+4)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)\cdot(2a^5-a^4-14a^3+2a^2+23a+6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 45 \) = \(5\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^5-2a^4-33a^3+4a^2+49a+12)\) = \((-2a^5+a^4+13a^3-2a^2-19a-5)^{2}\cdot(2a^5-a^4-14a^3+2a^2+23a+6)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 225 \) = \(5^{2}\cdot9\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{7123542098130361856}{15} a^{5} + \frac{1094487484828556022}{5} a^{4} + \frac{9670258293892248323}{3} a^{3} - \frac{8039599121866810022}{15} a^{2} - \frac{74653016232684779294}{15} a - 1030302127993585170 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(10 a^{5} - \frac{23}{4} a^{4} - 70 a^{3} + \frac{71}{4} a^{2} + \frac{463}{4} a + 23 : -\frac{69}{4} a^{5} + \frac{11}{2} a^{4} + \frac{921}{8} a^{3} - 9 a^{2} - \frac{675}{4} a - \frac{71}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 962.38816114232772627813282764533265589 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.72772 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^5+a^4+13a^3-2a^2-19a-5)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((2a^5-a^4-14a^3+2a^2+23a+6)\) \(9\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 45.1-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.