Properties

Label 5.5.65657.1-5.1-b4
Base field 5.5.65657.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+2a^{3}+4a^{2}-5a-2\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+2a+3\right){y}={x}^{3}+\left(-2a^{4}+3a^{3}+9a^{2}-10a-8\right){x}^{2}+\left(a^{4}-2a^{3}-6a^{2}+5a+11\right){x}-2a^{4}+3a^{3}+9a^{2}-9a-9\)
sage: E = EllipticCurve([K([-2,-5,4,2,-1]),K([-8,-10,9,3,-2]),K([3,2,-4,-1,1]),K([11,5,-6,-2,1]),K([-9,-9,9,3,-2])])
 
gp: E = ellinit([Polrev([-2,-5,4,2,-1]),Polrev([-8,-10,9,3,-2]),Polrev([3,2,-4,-1,1]),Polrev([11,5,-6,-2,1]),Polrev([-9,-9,9,3,-2])], K);
 
magma: E := EllipticCurve([K![-2,-5,4,2,-1],K![-8,-10,9,3,-2],K![3,2,-4,-1,1],K![11,5,-6,-2,1],K![-9,-9,9,3,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+2)\) = \((-a^2+a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3a^3-a^2-8a+1)\) = \((-a^2+a+2)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -3125 \) = \(-5^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{81829946}{3125} a^{4} - \frac{143808649}{3125} a^{3} - \frac{300612723}{3125} a^{2} + \frac{393132181}{3125} a + \frac{109010922}{3125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{3} + 5 a + 3 : a^{4} + a^{3} - 5 a^{2} - 7 a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1042.4635315086392201491351247425982508 \)
Tamagawa product: \( 5 \)
Torsion order: \(5\)
Leading coefficient: \( 0.813673832 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+2)\) \(5\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 5.1-b consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.