Properties

Label 5.5.65657.1-5.1-b1
Base field 5.5.65657.1
Conductor norm \( 5 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){x}{y}={x}^{3}+\left(-3a^{4}+4a^{3}+13a^{2}-10a-9\right){x}^{2}+\left(846a^{4}-1524a^{3}-3297a^{2}+4382a+1145\right){x}+20454a^{4}-36469a^{3}-77364a^{2}+102303a+27278\)
sage: E = EllipticCurve([K([-1,-1,1,0,0]),K([-9,-10,13,4,-3]),K([0,0,0,0,0]),K([1145,4382,-3297,-1524,846]),K([27278,102303,-77364,-36469,20454])])
 
gp: E = ellinit([Polrev([-1,-1,1,0,0]),Polrev([-9,-10,13,4,-3]),Polrev([0,0,0,0,0]),Polrev([1145,4382,-3297,-1524,846]),Polrev([27278,102303,-77364,-36469,20454])], K);
 
magma: E := EllipticCurve([K![-1,-1,1,0,0],K![-9,-10,13,4,-3],K![0,0,0,0,0],K![1145,4382,-3297,-1524,846],K![27278,102303,-77364,-36469,20454]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2+a+2)\) = \((-a^2+a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 5 \) = \(5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^4-a^3-5a^2+a+5)\) = \((-a^2+a+2)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -125 \) = \(-5^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{9227278873526453906244312610219036327836}{125} a^{4} + \frac{3459009377990835094505717267240191015816}{125} a^{3} - \frac{41380713886380859304809564621687978514293}{125} a^{2} - \frac{38438451731868504360194666541225269140904}{125} a - \frac{6711393728551335750914883813930912798473}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.11119611002758818348257441330587714675 \)
Tamagawa product: \( 3 \)
Torsion order: \(1\)
Leading coefficient: \( 0.813673832 \)
Analytic order of Ш: \( 625 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2+a+2)\) \(5\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 5.1-b consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.