Properties

Label 5.5.65657.1-37.1-a1
Base field 5.5.65657.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-2\right){y}={x}^{3}+\left(-3a^{4}+4a^{3}+13a^{2}-11a-10\right){x}^{2}+\left(345a^{4}-549a^{3}-1365a^{2}+1487a+783\right){x}+3135a^{4}-5551a^{3}-12034a^{2}+14521a+5015\)
sage: E = EllipticCurve([K([0,0,0,0,0]),K([-10,-11,13,4,-3]),K([-2,-1,1,0,0]),K([783,1487,-1365,-549,345]),K([5015,14521,-12034,-5551,3135])])
 
gp: E = ellinit([Polrev([0,0,0,0,0]),Polrev([-10,-11,13,4,-3]),Polrev([-2,-1,1,0,0]),Polrev([783,1487,-1365,-549,345]),Polrev([5015,14521,-12034,-5551,3135])], K);
 
magma: E := EllipticCurve([K![0,0,0,0,0],K![-10,-11,13,4,-3],K![-2,-1,1,0,0],K![783,1487,-1365,-549,345],K![5015,14521,-12034,-5551,3135]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-3a^2+3a+2)\) = \((a^4-a^3-3a^2+3a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-3a^3-9a^2+8a+10)\) = \((a^4-a^3-3a^2+3a+2)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 37 \) = \(37\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1682103188678259782838444650496}{37} a^{4} + \frac{4570890135767342003193598513152}{37} a^{3} + \frac{560624301911253507213468364800}{37} a^{2} - \frac{4327003532745719478147674701824}{37} a - \frac{979466879795506810202756071424}{37} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.51606531708657690515428067213638675279 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.25876359 \)
Analytic order of Ш: \( 625 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-a^3-3a^2+3a+2)\) \(37\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 37.1-a consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.