Properties

Label 5.5.65657.1-27.1-c2
Base field 5.5.65657.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}+\left(-a^{4}+a^{3}+5a^{2}-3a-4\right){y}={x}^{3}+\left(-2a^{4}+2a^{3}+9a^{2}-5a-5\right){x}^{2}+\left(-3a^{4}+2a^{3}+13a^{2}-a-3\right){x}-18a^{4}-5a^{3}+80a^{2}+68a+10\)
sage: E = EllipticCurve([K([-2,0,1,0,0]),K([-5,-5,9,2,-2]),K([-4,-3,5,1,-1]),K([-3,-1,13,2,-3]),K([10,68,80,-5,-18])])
 
gp: E = ellinit([Polrev([-2,0,1,0,0]),Polrev([-5,-5,9,2,-2]),Polrev([-4,-3,5,1,-1]),Polrev([-3,-1,13,2,-3]),Polrev([10,68,80,-5,-18])], K);
 
magma: E := EllipticCurve([K![-2,0,1,0,0],K![-5,-5,9,2,-2],K![-4,-3,5,1,-1],K![-3,-1,13,2,-3],K![10,68,80,-5,-18]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^4-3a^3-9a^2+9a+7)\) = \((-a^4+a^3+4a^2-2a-2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^4+9a^3+21a^2-27a-20)\) = \((-a^4+a^3+4a^2-2a-2)^{11}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 177147 \) = \(3^{11}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -1283318 a^{4} + 1637833 a^{3} + 6106189 a^{2} - 4095058 a - 5583206 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-2 a^{3} + a^{2} + 7 a + 3 : 4 a^{4} + 2 a^{3} - 21 a^{2} - 13 a + 1 : 1\right)$
Height \(0.070190700896818504483593225094055228925\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.070190700896818504483593225094055228925 \)
Period: \( 1906.8653015877971495755733607314665613 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.61173484 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-2a-2)\) \(3\) \(1\) \(II^{*}\) Additive \(1\) \(3\) \(11\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.1-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.