Properties

Label 5.5.65657.1-27.1-c1
Base field 5.5.65657.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(2a^{4}-2a^{3}-9a^{2}+4a+7\right){x}^{2}+\left(6a^{4}-15a^{3}-24a^{2}+36a+16\right){x}+18a^{4}-27a^{3}-60a^{2}+70a+21\)
sage: E = EllipticCurve([K([-1,-1,1,0,0]),K([7,4,-9,-2,2]),K([1,1,0,0,0]),K([16,36,-24,-15,6]),K([21,70,-60,-27,18])])
 
gp: E = ellinit([Polrev([-1,-1,1,0,0]),Polrev([7,4,-9,-2,2]),Polrev([1,1,0,0,0]),Polrev([16,36,-24,-15,6]),Polrev([21,70,-60,-27,18])], K);
 
magma: E := EllipticCurve([K![-1,-1,1,0,0],K![7,4,-9,-2,2],K![1,1,0,0,0],K![16,36,-24,-15,6],K![21,70,-60,-27,18]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^4-3a^3-9a^2+9a+7)\) = \((-a^4+a^3+4a^2-2a-2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^2-5a-9)\) = \((-a^4+a^3+4a^2-2a-2)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 19683 \) = \(3^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -24302019083166184075 a^{4} + 29987786156907253441 a^{3} + 114494070674765766206 a^{2} - 75391385133403896914 a - 103871320062709432359 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{44}{9} a^{4} + \frac{23}{3} a^{3} + \frac{163}{9} a^{2} - 21 a - \frac{58}{9} : \frac{499}{27} a^{4} - \frac{280}{9} a^{3} - \frac{1760}{27} a^{2} + \frac{251}{3} a + \frac{596}{27} : 1\right)$
Height \(0.21057210269045551345077967528216568677\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.21057210269045551345077967528216568677 \)
Period: \( 635.62176719593238319185778691048885378 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.61173484 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-2a-2)\) \(3\) \(1\) \(IV^{*}\) Additive \(1\) \(3\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.1-c consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.