Properties

Base field 5.5.65657.1
Label 5.5.65657.1-25.1-c1
Conductor \((25,-a^{3} + a^{2} + 3 a - 2)\)
Conductor norm \( 25 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 5*x^3 + 2*x^2 + 5*x + 1)
gp (2.8): K = nfinit(a^5 - a^4 - 5*a^3 + 2*a^2 + 5*a + 1);

Weierstrass equation

\( y^2 + \left(-a^{4} + 2 a^{3} + 4 a^{2} - 5 a - 3\right) x y + \left(a^{3} - 4 a - 1\right) y = x^{3} + \left(-a^{4} + 2 a^{3} + 3 a^{2} - 4 a - 2\right) x^{2} + \left(1015 a^{4} - 1849 a^{3} - 3633 a^{2} + 4940 a + 991\right) x - 23261 a^{4} + 41576 a^{3} + 81774 a^{2} - 113086 a - 22399 \)
magma: E := ChangeRing(EllipticCurve([-a^4 + 2*a^3 + 4*a^2 - 5*a - 3, -a^4 + 2*a^3 + 3*a^2 - 4*a - 2, a^3 - 4*a - 1, 1015*a^4 - 1849*a^3 - 3633*a^2 + 4940*a + 991, -23261*a^4 + 41576*a^3 + 81774*a^2 - 113086*a - 22399]),K);
sage: E = EllipticCurve(K, [-a^4 + 2*a^3 + 4*a^2 - 5*a - 3, -a^4 + 2*a^3 + 3*a^2 - 4*a - 2, a^3 - 4*a - 1, 1015*a^4 - 1849*a^3 - 3633*a^2 + 4940*a + 991, -23261*a^4 + 41576*a^3 + 81774*a^2 - 113086*a - 22399])
gp (2.8): E = ellinit([-a^4 + 2*a^3 + 4*a^2 - 5*a - 3, -a^4 + 2*a^3 + 3*a^2 - 4*a - 2, a^3 - 4*a - 1, 1015*a^4 - 1849*a^3 - 3633*a^2 + 4940*a + 991, -23261*a^4 + 41576*a^3 + 81774*a^2 - 113086*a - 22399],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((25,-a^{3} + a^{2} + 3 a - 2)\) = \( \left(-a^{2} + a + 2\right)^{2} \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 25 \) = \( 5^{2} \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((1953125,a + 913693,a^{4} - a^{3} - 4 a^{2} + 2 a + 1627699,-a^{4} + a^{3} + 5 a^{2} - 3 a + 450984,-a^{4} + 2 a^{3} + 4 a^{2} - 6 a + 853586)\) = \( \left(-a^{2} + a + 2\right)^{9} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 1953125 \) = \( 5^{9} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( \frac{9227278873526453906244312610219036327836}{125} a^{4} + \frac{3459009377990835094505717267240191015816}{125} a^{3} - \frac{41380713886380859304809564621687978514293}{125} a^{2} - \frac{38438451731868504360194666541225269140904}{125} a - \frac{6711393728551335750914883813930912798473}{125} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{2} + a + 2\right) \) \(5\) \(4\) \(I_{3}^*\) Additive \(1\) \(2\) \(9\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 25.1-c consists of curves linked by isogenies of degrees dividing 15.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.