Properties

Label 5.5.65657.1-15.1-a1
Base field 5.5.65657.1
Conductor norm \( 15 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 5, 2, -5, -1, 1]))
 
gp: K = nfinit(Polrev([1, 5, 2, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(-2a^{4}+3a^{3}+9a^{2}-9a-6\right){x}{y}+\left(-a^{4}+a^{3}+5a^{2}-2a-4\right){y}={x}^{3}+\left(-2a^{4}+3a^{3}+8a^{2}-7a-5\right){x}^{2}+\left(-46a^{4}+109a^{3}+43a^{2}-117a-48\right){x}+463a^{4}-1139a^{3}-594a^{2}+1290a+662\)
sage: E = EllipticCurve([K([-6,-9,9,3,-2]),K([-5,-7,8,3,-2]),K([-4,-2,5,1,-1]),K([-48,-117,43,109,-46]),K([662,1290,-594,-1139,463])])
 
gp: E = ellinit([Polrev([-6,-9,9,3,-2]),Polrev([-5,-7,8,3,-2]),Polrev([-4,-2,5,1,-1]),Polrev([-48,-117,43,109,-46]),Polrev([662,1290,-594,-1139,463])], K);
 
magma: E := EllipticCurve([K![-6,-9,9,3,-2],K![-5,-7,8,3,-2],K![-4,-2,5,1,-1],K![-48,-117,43,109,-46],K![662,1290,-594,-1139,463]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^4-3a^3-8a^2+7a+5)\) = \((-a^4+a^3+4a^2-2a-2)\cdot(-a^2+a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 15 \) = \(3\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((12a^4-19a^3-50a^2+49a+62)\) = \((-a^4+a^3+4a^2-2a-2)^{4}\cdot(-a^2+a+2)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -6328125 \) = \(-3^{4}\cdot5^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{43762711342084459813388}{6328125} a^{4} + \frac{19657683179991310734076}{2109375} a^{3} - \frac{80370595538065362656194}{6328125} a^{2} - \frac{11238856761605347645073}{703125} a - \frac{18641764309297167053009}{6328125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{7}{4} a^{4} + \frac{1}{4} a^{3} + \frac{23}{2} a^{2} - 4 a - \frac{37}{4} : -5 a^{4} + \frac{17}{2} a^{3} + \frac{137}{8} a^{2} - \frac{61}{4} a - 16 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 396.84894026607950963910035482472450453 \)
Tamagawa product: \( 4 \)  =  \(2^{2}\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.54876208 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+a^3+4a^2-2a-2)\) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\((-a^2+a+2)\) \(5\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 15.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.