Properties

Base field 5.5.65657.1
Label 5.5.65657.1-15.1-a1
Conductor \((15,a^{4} - a^{3} - 5 a^{2} + 2 a + 3)\)
Conductor norm \( 15 \)
CM no
base-change no
Q-curve not determined
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.65657.1

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 5 x^{3} + 2 x^{2} + 5 x + 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 5, 2, -5, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 5*x^3 + 2*x^2 + 5*x + 1)
gp (2.8): K = nfinit(a^5 - a^4 - 5*a^3 + 2*a^2 + 5*a + 1);

Weierstrass equation

\( y^2 + \left(-2 a^{4} + 3 a^{3} + 9 a^{2} - 9 a - 6\right) x y + \left(-a^{4} + a^{3} + 5 a^{2} - 2 a - 4\right) y = x^{3} + \left(-2 a^{4} + 3 a^{3} + 8 a^{2} - 7 a - 5\right) x^{2} + \left(-46 a^{4} + 109 a^{3} + 43 a^{2} - 117 a - 48\right) x + 463 a^{4} - 1139 a^{3} - 594 a^{2} + 1290 a + 662 \)
magma: E := ChangeRing(EllipticCurve([-2*a^4 + 3*a^3 + 9*a^2 - 9*a - 6, -2*a^4 + 3*a^3 + 8*a^2 - 7*a - 5, -a^4 + a^3 + 5*a^2 - 2*a - 4, -46*a^4 + 109*a^3 + 43*a^2 - 117*a - 48, 463*a^4 - 1139*a^3 - 594*a^2 + 1290*a + 662]),K);
sage: E = EllipticCurve(K, [-2*a^4 + 3*a^3 + 9*a^2 - 9*a - 6, -2*a^4 + 3*a^3 + 8*a^2 - 7*a - 5, -a^4 + a^3 + 5*a^2 - 2*a - 4, -46*a^4 + 109*a^3 + 43*a^2 - 117*a - 48, 463*a^4 - 1139*a^3 - 594*a^2 + 1290*a + 662])
gp (2.8): E = ellinit([-2*a^4 + 3*a^3 + 9*a^2 - 9*a - 6, -2*a^4 + 3*a^3 + 8*a^2 - 7*a - 5, -a^4 + a^3 + 5*a^2 - 2*a - 4, -46*a^4 + 109*a^3 + 43*a^2 - 117*a - 48, 463*a^4 - 1139*a^3 - 594*a^2 + 1290*a + 662],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((15,a^{4} - a^{3} - 5 a^{2} + 2 a + 3)\) = \( \left(-a^{4} + a^{3} + 4 a^{2} - 2 a - 2\right) \cdot \left(-a^{2} + a + 2\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 15 \) = \( 3 \cdot 5 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((6328125,a + 2007443,a^{4} - a^{3} - 4 a^{2} + 2 a + 3190199,-a^{4} + a^{3} + 5 a^{2} - 3 a + 5997859,-a^{4} + 2 a^{3} + 4 a^{2} - 6 a + 931711)\) = \( \left(-a^{4} + a^{3} + 4 a^{2} - 2 a - 2\right)^{4} \cdot \left(-a^{2} + a + 2\right)^{7} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 6328125 \) = \( 3^{4} \cdot 5^{7} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( \frac{43762711342084459813388}{6328125} a^{4} + \frac{19657683179991310734076}{2109375} a^{3} - \frac{80370595538065362656194}{6328125} a^{2} - \frac{11238856761605347645073}{703125} a - \frac{18641764309297167053009}{6328125} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil rank and generators

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(-\frac{7}{4} a^{4} + \frac{1}{4} a^{3} + \frac{23}{2} a^{2} - 4 a - \frac{37}{4} : -5 a^{4} + \frac{17}{2} a^{3} + \frac{137}{8} a^{2} - \frac{61}{4} a - 16 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a^{4} + a^{3} + 4 a^{2} - 2 a - 2\right) \) 3 \(4\) \( I_{4} \) Split multiplicative 1 4 4
\( \left(-a^{2} + a + 2\right) \) 5 \(1\) \( I_{7} \) Non-split multiplicative 1 7 7

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 15.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It has not yet been determined whether or not it is a \(\Q\)-curve.