Properties

Label 5.5.38569.1-43.2-d1
Base field 5.5.38569.1
Conductor norm \( 43 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}+a^{3}-9a^{2}-3a+5\right){x}{y}+\left(a^{2}+a-2\right){y}={x}^{3}+\left(2a^{4}-9a^{2}+3\right){x}^{2}+\left(6a^{4}+2a^{3}-27a^{2}-14a+18\right){x}-9a^{4}+14a^{3}+12a^{2}-10a+6\)
sage: E = EllipticCurve([K([5,-3,-9,1,2]),K([3,0,-9,0,2]),K([-2,1,1,0,0]),K([18,-14,-27,2,6]),K([6,-10,12,14,-9])])
 
gp: E = ellinit([Polrev([5,-3,-9,1,2]),Polrev([3,0,-9,0,2]),Polrev([-2,1,1,0,0]),Polrev([18,-14,-27,2,6]),Polrev([6,-10,12,14,-9])], K);
 
magma: E := EllipticCurve([K![5,-3,-9,1,2],K![3,0,-9,0,2],K![-2,1,1,0,0],K![18,-14,-27,2,6],K![6,-10,12,14,-9]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+6a^2+2a-3)\) = \((-a^4+6a^2+2a-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43 \) = \(43\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^4+a^3+4a^2-2a-2)\) = \((-a^4+6a^2+2a-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 43 \) = \(43\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{51665932627}{43} a^{4} - \frac{10018445802}{43} a^{3} + \frac{250693585412}{43} a^{2} + \frac{53592431783}{43} a - \frac{173974818865}{43} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{4} - a^{3} + 5 a^{2} + 2 a - 2 : a^{3} - a^{2} - 2 a + 3 : 1\right)$
Height \(0.0063189158403372600625030208892289097783\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0063189158403372600625030208892289097783 \)
Period: \( 12588.521348623520338722331042412597325 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 2.02520088 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+6a^2+2a-3)\) \(43\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 43.2-d consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.