Properties

Label 5.5.38569.1-37.1-b2
Base field 5.5.38569.1
Conductor norm \( 37 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a+1\right){y}={x}^{3}+\left(a^{4}+a^{3}-5a^{2}-5a+4\right){x}^{2}+\left(-155a^{4}-41a^{3}+764a^{2}+205a-565\right){x}-1406a^{4}-388a^{3}+6922a^{2}+1910a-5100\)
sage: E = EllipticCurve([K([0,0,0,0,0]),K([4,-5,-5,1,1]),K([1,-3,0,1,0]),K([-565,205,764,-41,-155]),K([-5100,1910,6922,-388,-1406])])
 
gp: E = ellinit([Polrev([0,0,0,0,0]),Polrev([4,-5,-5,1,1]),Polrev([1,-3,0,1,0]),Polrev([-565,205,764,-41,-155]),Polrev([-5100,1910,6922,-388,-1406])], K);
 
magma: E := EllipticCurve([K![0,0,0,0,0],K![4,-5,-5,1,1],K![1,-3,0,1,0],K![-565,205,764,-41,-155],K![-5100,1910,6922,-388,-1406]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4+a^3-5a^2-5a+4)\) = \((a^4+a^3-5a^2-5a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 37 \) = \(37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^4+3a^3-23a^2-19a+11)\) = \((a^4+a^3-5a^2-5a+4)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 50653 \) = \(37^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{631396984641001648128}{50653} a^{4} + \frac{499267254836904431616}{50653} a^{3} - \frac{2762197178156919664640}{50653} a^{2} - \frac{2184164061589806465024}{50653} a + \frac{798494490468990795776}{50653} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 10.809339676339747684113339965397883803 \)
Tamagawa product: \( 3 \)
Torsion order: \(1\)
Leading coefficient: \( 1.48608530 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4+a^3-5a^2-5a+4)\) \(37\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 37.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.