Properties

Label 5.5.38569.1-17.1-c6
Base field 5.5.38569.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-a^{4}+5a^{2}+a-3\right){x}{y}={x}^{3}+\left(-a^{4}+a^{3}+4a^{2}-4a\right){x}^{2}+\left(-28a^{4}+51a^{3}+17a^{2}-333a+90\right){x}-855a^{4}-796a^{3}+3008a^{2}+2115a-791\)
sage: E = EllipticCurve([K([-3,1,5,0,-1]),K([0,-4,4,1,-1]),K([0,0,0,0,0]),K([90,-333,17,51,-28]),K([-791,2115,3008,-796,-855])])
 
gp: E = ellinit([Polrev([-3,1,5,0,-1]),Polrev([0,-4,4,1,-1]),Polrev([0,0,0,0,0]),Polrev([90,-333,17,51,-28]),Polrev([-791,2115,3008,-796,-855])], K);
 
magma: E := EllipticCurve([K![-3,1,5,0,-1],K![0,-4,4,1,-1],K![0,0,0,0,0],K![90,-333,17,51,-28],K![-791,2115,3008,-796,-855]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a-1)\) = \((a^3-3a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5a^4+4a^3-21a^2-12a+1)\) = \((a^3-3a-1)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 83521 \) = \(17^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{191010208049176061567432964418935750417}{83521} a^{4} + \frac{389373409648192880822797404169052473649}{83521} a^{3} - \frac{161315178223120659347331199752509351188}{83521} a^{2} - \frac{328840231180583481626805905878816700787}{83521} a + \frac{93701569431652774399214957840089814633}{83521} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{75823468591935}{28059766339609} a^{4} - \frac{79447216842155}{28059766339609} a^{3} + \frac{267777064770760}{28059766339609} a^{2} + \frac{202925795040003}{28059766339609} a + \frac{56944293685483}{28059766339609} : \frac{796278179042250939088}{148636707086560795523} a^{4} + \frac{2624872917322746219746}{148636707086560795523} a^{3} - \frac{3262843028579578819662}{148636707086560795523} a^{2} - \frac{10855781245656676923987}{148636707086560795523} a + \frac{2395335271138431630239}{148636707086560795523} : 1\right)$
Height \(5.2256210355640711675946979979914220240\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{9}{2} a^{4} + \frac{11}{4} a^{3} - \frac{87}{4} a^{2} - \frac{61}{4} a + \frac{25}{4} : -\frac{1}{2} a^{4} + \frac{1}{2} a^{3} + \frac{17}{4} a^{2} + \frac{21}{8} a - \frac{1}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 5.2256210355640711675946979979914220240 \)
Period: \( 6.0005706044630956041090036444709045513 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.59665569 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a-1)\) \(17\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 17.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.