Properties

Label 5.5.38569.1-11.1-b4
Base field 5.5.38569.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}+a^{3}-9a^{2}-3a+4\right){x}{y}+\left(a^{4}-4a^{2}+2\right){y}={x}^{3}+\left(-a^{4}-a^{3}+4a^{2}+5a-2\right){x}^{2}+\left(59a^{4}+38a^{3}-336a^{2}-106a+267\right){x}-27636a^{4}-7484a^{3}+135836a^{2}+37315a-99920\)
sage: E = EllipticCurve([K([4,-3,-9,1,2]),K([-2,5,4,-1,-1]),K([2,0,-4,0,1]),K([267,-106,-336,38,59]),K([-99920,37315,135836,-7484,-27636])])
 
gp: E = ellinit([Polrev([4,-3,-9,1,2]),Polrev([-2,5,4,-1,-1]),Polrev([2,0,-4,0,1]),Polrev([267,-106,-336,38,59]),Polrev([-99920,37315,135836,-7484,-27636])], K);
 
magma: E := EllipticCurve([K![4,-3,-9,1,2],K![-2,5,4,-1,-1],K![2,0,-4,0,1],K![267,-106,-336,38,59],K![-99920,37315,135836,-7484,-27636]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+4a-2)\) = \((-a^3+a^2+4a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-97a^4-82a^3+461a^2+290a-298)\) = \((-a^3+a^2+4a-2)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25937424601 \) = \(11^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1473653245695872707204967042154}{25937424601} a^{4} + \frac{3004035201972045797772161182779}{25937424601} a^{3} - \frac{1244554615150765042221453203390}{25937424601} a^{2} - \frac{2537018722422878862920033049866}{25937424601} a + \frac{722912263852424824842374841442}{25937424601} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(15 a^{4} + 3 a^{3} - 71 a^{2} - 21 a + 52 : -17 a^{4} - 6 a^{3} + 88 a^{2} + 22 a - 65 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3.2251302185615060845689424446513415109 \)
Tamagawa product: \( 10 \)
Torsion order: \(2\)
Leading coefficient: \( 1.02637977 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a-2)\) \(11\) \(10\) \(I_{10}\) Split multiplicative \(-1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 11.1-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.