Properties

Label 5.5.38569.1-11.1-a3
Base field 5.5.38569.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}+a^{3}-9a^{2}-4a+4\right){x}{y}={x}^{3}+\left(2a^{4}+a^{3}-10a^{2}-5a+7\right){x}^{2}+\left(3a^{4}+a^{3}-15a^{2}-5a+12\right){x}\)
sage: E = EllipticCurve([K([4,-4,-9,1,2]),K([7,-5,-10,1,2]),K([0,0,0,0,0]),K([12,-5,-15,1,3]),K([0,0,0,0,0])])
 
gp: E = ellinit([Polrev([4,-4,-9,1,2]),Polrev([7,-5,-10,1,2]),Polrev([0,0,0,0,0]),Polrev([12,-5,-15,1,3]),Polrev([0,0,0,0,0])], K);
 
magma: E := EllipticCurve([K![4,-4,-9,1,2],K![7,-5,-10,1,2],K![0,0,0,0,0],K![12,-5,-15,1,3],K![0,0,0,0,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+4a-2)\) = \((-a^3+a^2+4a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a-3)\) = \((-a^3+a^2+4a-2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 121 \) = \(11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{114690314}{121} a^{4} + \frac{90982985}{121} a^{3} - \frac{501204949}{121} a^{2} - \frac{397451243}{121} a + \frac{143972139}{121} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(0 : 0 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 410.57280729339765300613460628667229308 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 1.04530011 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a-2)\) \(11\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.4.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 11.1-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.