Properties

Label 5.5.38569.1-11.1-a2
Base field 5.5.38569.1
Conductor norm \( 11 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.38569.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} + 4 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 4, 0, -5, 0, 1]))
 
gp: K = nfinit(Polrev([-1, 4, 0, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 0, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-2\right){x}{y}={x}^{3}+\left(2a^{4}+a^{3}-9a^{2}-3a+4\right){x}^{2}+\left(-96a^{4}+168a^{3}+661a^{2}-755a-1358\right){x}+5500a^{4}+560a^{3}-28426a^{2}-4444a+23872\)
sage: E = EllipticCurve([K([-2,0,1,0,0]),K([4,-3,-9,1,2]),K([0,0,0,0,0]),K([-1358,-755,661,168,-96]),K([23872,-4444,-28426,560,5500])])
 
gp: E = ellinit([Polrev([-2,0,1,0,0]),Polrev([4,-3,-9,1,2]),Polrev([0,0,0,0,0]),Polrev([-1358,-755,661,168,-96]),Polrev([23872,-4444,-28426,560,5500])], K);
 
magma: E := EllipticCurve([K![-2,0,1,0,0],K![4,-3,-9,1,2],K![0,0,0,0,0],K![-1358,-755,661,168,-96],K![23872,-4444,-28426,560,5500]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3+a^2+4a-2)\) = \((-a^3+a^2+4a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((10004a^4-3192a^3-46419a^2+14331a+26476)\) = \((-a^3+a^2+4a-2)^{20}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -672749994932560009201 \) = \(-11^{20}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{38267658849058227209117423964971}{672749994932560009201} a^{4} - \frac{78660601240615996179672423975313}{672749994932560009201} a^{3} - \frac{45362244803600084463716093252952}{672749994932560009201} a^{2} + \frac{92081451737609143763002263964608}{672749994932560009201} a - \frac{20518519684505025230375543625252}{672749994932560009201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{23}{4} a^{4} + 3 a^{3} - 26 a^{2} - 9 a + 23 : \frac{35}{8} a^{4} - 26 a^{2} - \frac{47}{8} a + \frac{43}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 41.057280729339765300613460628667229307 \)
Tamagawa product: \( 20 \)
Torsion order: \(2\)
Leading coefficient: \( 1.04530011 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a-2)\) \(11\) \(20\) \(I_{20}\) Split multiplicative \(-1\) \(1\) \(20\) \(20\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 11.1-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.