Properties

Label 5.5.36497.1-9.1-b3
Base field 5.5.36497.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-4a^{2}+3a+2\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+2a+2\right){y}={x}^{3}+\left(2a^{4}-3a^{3}-7a^{2}+7a+3\right){x}^{2}+\left(-11a^{4}+18a^{3}+35a^{2}-29a-20\right){x}-37a^{4}+72a^{3}+122a^{2}-163a-101\)
sage: E = EllipticCurve([K([2,3,-4,-1,1]),K([3,7,-7,-3,2]),K([2,2,-4,-1,1]),K([-20,-29,35,18,-11]),K([-101,-163,122,72,-37])])
 
gp: E = ellinit([Polrev([2,3,-4,-1,1]),Polrev([3,7,-7,-3,2]),Polrev([2,2,-4,-1,1]),Polrev([-20,-29,35,18,-11]),Polrev([-101,-163,122,72,-37])], K);
 
magma: E := EllipticCurve([K![2,3,-4,-1,1],K![3,7,-7,-3,2],K![2,2,-4,-1,1],K![-20,-29,35,18,-11],K![-101,-163,122,72,-37]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-2)\) = \((a^2-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^4+20a^3-13a^2-39a+88)\) = \((a^2-1)^{18}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 387420489 \) = \(3^{18}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{679068463130598740}{531441} a^{4} - \frac{359821343885971159}{177147} a^{3} - \frac{826730295123875959}{177147} a^{2} + \frac{2377533227165763589}{531441} a + \frac{1654749596218451752}{531441} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-2 a^{4} + 2 a^{3} + 9 a^{2} - 5 a - 5 : 2 a^{4} - 4 a^{3} - 5 a^{2} + 7 a + 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 38.112181296149507852482162174273084147 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.897734128 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(2\) \(I_{12}^{*}\) Additive \(-1\) \(2\) \(18\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-b consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.