Properties

Label 5.5.36497.1-9.1-a2
Base field 5.5.36497.1
Conductor norm \( 9 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{4}-a^{3}-4a^{2}+2a+3\right){y}={x}^{3}+\left(-a^{3}+5a\right){x}^{2}+\left(76a^{4}-83a^{3}-258a^{2}+73a-19\right){x}-302a^{4}+116a^{3}+1335a^{2}+348a-480\)
sage: E = EllipticCurve([K([0,1,0,0,0]),K([0,5,0,-1,0]),K([3,2,-4,-1,1]),K([-19,73,-258,-83,76]),K([-480,348,1335,116,-302])])
 
gp: E = ellinit([Polrev([0,1,0,0,0]),Polrev([0,5,0,-1,0]),Polrev([3,2,-4,-1,1]),Polrev([-19,73,-258,-83,76]),Polrev([-480,348,1335,116,-302])], K);
 
magma: E := EllipticCurve([K![0,1,0,0,0],K![0,5,0,-1,0],K![3,2,-4,-1,1],K![-19,73,-258,-83,76],K![-480,348,1335,116,-302]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-2)\) = \((a^2-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 9 \) = \(3^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-523a^4+759a^3+1999a^2-1691a-1922)\) = \((a^2-1)^{30}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -205891132094649 \) = \(-3^{30}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{42958432423020244475506}{282429536481} a^{4} + \frac{4551898895594886045259}{94143178827} a^{3} - \frac{32400118789856343855629}{94143178827} a^{2} - \frac{10536177229996279192588}{282429536481} a + \frac{18530426122247352513662}{282429536481} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(2 a^{4} - 5 a^{3} - \frac{17}{4} a^{2} + 13 a + 2 : -\frac{3}{8} a^{3} + \frac{1}{2} a^{2} - a - \frac{5}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 193.28048998110206485349929096345016089 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 1.01171790 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(4\) \(I_{24}^{*}\) Additive \(-1\) \(2\) \(30\) \(24\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 9.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.