Properties

Label 5.5.36497.1-39.1-b2
Base field 5.5.36497.1
Conductor norm \( 39 \)
CM no
Base change no
Q-curve no
Torsion order \( 14 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-3a^{2}+2a+1\right){x}{y}+\left(a^{4}-2a^{3}-2a^{2}+4a\right){y}={x}^{3}+\left(-2a^{4}+3a^{3}+7a^{2}-7a-3\right){x}^{2}+\left(-4a^{4}+10a^{3}-a^{2}+8a-21\right){x}+38a^{4}-121a^{3}+60a^{2}+31a+19\)
sage: E = EllipticCurve([K([1,2,-3,-1,1]),K([-3,-7,7,3,-2]),K([0,4,-2,-2,1]),K([-21,8,-1,10,-4]),K([19,31,60,-121,38])])
 
gp: E = ellinit([Polrev([1,2,-3,-1,1]),Polrev([-3,-7,7,3,-2]),Polrev([0,4,-2,-2,1]),Polrev([-21,8,-1,10,-4]),Polrev([19,31,60,-121,38])], K);
 
magma: E := EllipticCurve([K![1,2,-3,-1,1],K![-3,-7,7,3,-2],K![0,4,-2,-2,1],K![-21,8,-1,10,-4],K![19,31,60,-121,38]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+3a^3+7a^2-6a-2)\) = \((a^2-1)\cdot(a^3-3a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 39 \) = \(3\cdot13\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-370a^4+697a^3-1300a^2+1153a+4225)\) = \((a^2-1)^{28}\cdot(a^3-3a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 653384069306141121 \) = \(3^{28}\cdot13^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{245221713430759302881439941}{653384069306141121} a^{4} + \frac{54549846486679869070186093}{217794689768713707} a^{3} + \frac{317685914344297788746472133}{217794689768713707} a^{2} + \frac{44794650789260669643855797}{653384069306141121} a - \frac{183239072364466551195819934}{653384069306141121} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/14\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{4} + a^{3} + 5 a^{2} - 5 a - 1 : -a^{4} + 10 a^{2} - 8 a - 4 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1002.4826793768273517558818008855012278 \)
Tamagawa product: \( 56 \)  =  \(( 2^{2} \cdot 7 )\cdot2\)
Torsion order: \(14\)
Leading coefficient: \( 1.49927138 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(28\) \(I_{28}\) Split multiplicative \(-1\) \(1\) \(28\) \(28\)
\((a^3-3a)\) \(13\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 7, 14 and 28.
Its isogeny class 39.1-b consists of curves linked by isogenies of degrees dividing 28.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.