Properties

Base field 5.5.36497.1
Label 5.5.36497.1-39.1-a8
Conductor \((39,2 a^{4} - 3 a^{3} - 7 a^{2} + 6 a + 2)\)
Conductor norm \( 39 \)
CM no
base-change no
Q-curve not determined
Torsion order \( 2 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1)
gp (2.8): K = nfinit(a^5 - 2*a^4 - 3*a^3 + 5*a^2 + a - 1);

Weierstrass equation

\( y^2 + x y + \left(2 a^{4} - 3 a^{3} - 7 a^{2} + 7 a + 3\right) y = x^{3} + \left(-a^{3} + a^{2} + 3 a - 1\right) x^{2} + \left(-4706 a^{4} + 2553 a^{3} + 11325 a^{2} - 4556 a - 5334\right) x + 186623 a^{4} + 106339 a^{3} - 305029 a^{2} - 211344 a - 18618 \)
magma: E := ChangeRing(EllipticCurve([1, -a^3 + a^2 + 3*a - 1, 2*a^4 - 3*a^3 - 7*a^2 + 7*a + 3, -4706*a^4 + 2553*a^3 + 11325*a^2 - 4556*a - 5334, 186623*a^4 + 106339*a^3 - 305029*a^2 - 211344*a - 18618]),K);
sage: E = EllipticCurve(K, [1, -a^3 + a^2 + 3*a - 1, 2*a^4 - 3*a^3 - 7*a^2 + 7*a + 3, -4706*a^4 + 2553*a^3 + 11325*a^2 - 4556*a - 5334, 186623*a^4 + 106339*a^3 - 305029*a^2 - 211344*a - 18618])
gp (2.8): E = ellinit([1, -a^3 + a^2 + 3*a - 1, 2*a^4 - 3*a^3 - 7*a^2 + 7*a + 3, -4706*a^4 + 2553*a^3 + 11325*a^2 - 4556*a - 5334, 186623*a^4 + 106339*a^3 - 305029*a^2 - 211344*a - 18618],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((39,2 a^{4} - 3 a^{3} - 7 a^{2} + 6 a + 2)\) = \( \left(a^{2} - 1\right) \cdot \left(a^{3} - 3 a\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 39 \) = \( 3 \cdot 13 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((188245551,a + 13931290,a^{4} - 2 a^{3} - 3 a^{2} + 5 a + 100335980,a^{4} - a^{3} - 4 a^{2} + 2 a + 80612227,a^{2} - a + 119840059)\) = \( \left(a^{2} - 1\right) \cdot \left(a^{3} - 3 a\right)^{7} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 188245551 \) = \( 3 \cdot 13^{7} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{167642752752633447006093524748799040238434}{188245551} a^{4} + \frac{140053631818257799009656597663946084463786}{62748517} a^{3} + \frac{96735383245269016352815198554224769104727}{62748517} a^{2} - \frac{985141440142117916445879153670063426054138}{188245551} a + \frac{331121807700898395019402938118329735513617}{188245551} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil rank and generators

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/2\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(4 a^{4} - 21 a^{3} - 67 a^{2} + 71 a + \frac{267}{4} : -3 a^{4} + 12 a^{3} + 37 a^{2} - 39 a - \frac{279}{8} : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - 1\right) \) 3 \(1\) \( I_{1} \) Non-split multiplicative 1 1 1
\( \left(a^{3} - 3 a\right) \) 13 \(7\) \( I_{7} \) Split multiplicative 1 7 7

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.6.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4, 7, 14 and 28.
Its isogeny class 39.1-a consists of curves linked by isogenies of degrees dividing 28.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It has not yet been determined whether or not it is a \(\Q\)-curve.