Properties

Base field 5.5.36497.1
Label 5.5.36497.1-39.1-a6
Conductor \((39,2 a^{4} - 3 a^{3} - 7 a^{2} + 6 a + 2)\)
Conductor norm \( 39 \)
CM no
base-change no
Q-curve no
Torsion order \( 4 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1)
gp (2.8): K = nfinit(a^5 - 2*a^4 - 3*a^3 + 5*a^2 + a - 1);

Weierstrass equation

\( y^2 + \left(a^{4} - 2 a^{3} - 2 a^{2} + 4 a\right) x y + \left(2 a^{4} - 3 a^{3} - 7 a^{2} + 7 a + 3\right) y = x^{3} + \left(-a^{4} + 2 a^{3} + 4 a^{2} - 7 a - 3\right) x^{2} + \left(2185 a^{4} - 6512 a^{3} - 2423 a^{2} + 15352 a - 7692\right) x - 148316 a^{4} + 370555 a^{3} + 276975 a^{2} - 864563 a + 250675 \)
magma: E := ChangeRing(EllipticCurve([a^4 - 2*a^3 - 2*a^2 + 4*a, -a^4 + 2*a^3 + 4*a^2 - 7*a - 3, 2*a^4 - 3*a^3 - 7*a^2 + 7*a + 3, 2185*a^4 - 6512*a^3 - 2423*a^2 + 15352*a - 7692, -148316*a^4 + 370555*a^3 + 276975*a^2 - 864563*a + 250675]),K);
sage: E = EllipticCurve(K, [a^4 - 2*a^3 - 2*a^2 + 4*a, -a^4 + 2*a^3 + 4*a^2 - 7*a - 3, 2*a^4 - 3*a^3 - 7*a^2 + 7*a + 3, 2185*a^4 - 6512*a^3 - 2423*a^2 + 15352*a - 7692, -148316*a^4 + 370555*a^3 + 276975*a^2 - 864563*a + 250675])
gp (2.8): E = ellinit([a^4 - 2*a^3 - 2*a^2 + 4*a, -a^4 + 2*a^3 + 4*a^2 - 7*a - 3, 2*a^4 - 3*a^3 - 7*a^2 + 7*a + 3, 2185*a^4 - 6512*a^3 - 2423*a^2 + 15352*a - 7692, -148316*a^4 + 370555*a^3 + 276975*a^2 - 864563*a + 250675],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((39,2 a^{4} - 3 a^{3} - 7 a^{2} + 6 a + 2)\) = \( \left(a^{2} - 1\right) \cdot \left(a^{3} - 3 a\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 39 \) = \( 3 \cdot 13 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((35436387471293601,a + 16776819445416637,a^{4} - 2 a^{3} - 3 a^{2} + 5 a + 6838860821532848,a^{4} - a^{3} - 4 a^{2} + 2 a + 28542202404497815,a^{2} - a + 7228565274752719)\) = \( \left(a^{2} - 1\right)^{2} \cdot \left(a^{3} - 3 a\right)^{14} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 35436387471293601 \) = \( 3^{2} \cdot 13^{14} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{472782327302300801895731921547539}{35436387471293601} a^{4} + \frac{394975294976905362408499434574120}{11812129157097867} a^{3} + \frac{272811905305461777343354151432686}{11812129157097867} a^{2} - \frac{2778265732130705691487149505785760}{35436387471293601} a + \frac{933818725458499494056492136677657}{35436387471293601} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/2\Z\times\Z/2\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generators: $\left(24 a^{4} - 60 a^{3} - 30 a^{2} + 139 a - 74 : 33 a^{4} - 85 a^{3} - 64 a^{2} + 199 a - 53 : 1\right)$,$\left(4 a^{4} + 8 a^{3} - 38 a^{2} - 21 a + 70 : -29 a^{4} + 57 a^{3} + 72 a^{2} - 131 a + 3 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - 1\right) \) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\( \left(a^{3} - 3 a\right) \) \(13\) \(14\) \(I_{14}\) Split multiplicative \(-1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(7\) 7B.6.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 39.1-a consists of curves linked by isogenies of degrees dividing 28.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.