Properties

Base field 5.5.36497.1
Label 5.5.36497.1-27.1-b2
Conductor \((27,-a^{3} + 2 a^{2} + 3 a - 3)\)
Conductor norm \( 27 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1)
gp (2.8): K = nfinit(a^5 - 2*a^4 - 3*a^3 + 5*a^2 + a - 1);

Weierstrass equation

\( y^2 + \left(2 a^{4} - 3 a^{3} - 7 a^{2} + 8 a + 3\right) x y + \left(a^{4} - a^{3} - 3 a^{2} + a\right) y = x^{3} + \left(a^{3} - 5 a - 2\right) x^{2} + \left(-5 a^{3} + 2 a^{2} + 16 a - 1\right) x + 4 a^{4} - 4 a^{3} - 16 a^{2} + 6 a + 10 \)
magma: E := ChangeRing(EllipticCurve([2*a^4 - 3*a^3 - 7*a^2 + 8*a + 3, a^3 - 5*a - 2, a^4 - a^3 - 3*a^2 + a, -5*a^3 + 2*a^2 + 16*a - 1, 4*a^4 - 4*a^3 - 16*a^2 + 6*a + 10]),K);
sage: E = EllipticCurve(K, [2*a^4 - 3*a^3 - 7*a^2 + 8*a + 3, a^3 - 5*a - 2, a^4 - a^3 - 3*a^2 + a, -5*a^3 + 2*a^2 + 16*a - 1, 4*a^4 - 4*a^3 - 16*a^2 + 6*a + 10])
gp (2.8): E = ellinit([2*a^4 - 3*a^3 - 7*a^2 + 8*a + 3, a^3 - 5*a - 2, a^4 - a^3 - 3*a^2 + a, -5*a^3 + 2*a^2 + 16*a - 1, 4*a^4 - 4*a^3 - 16*a^2 + 6*a + 10],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((27,-a^{3} + 2 a^{2} + 3 a - 3)\) = \( \left(a^{2} - 1\right)^{3} \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 27 \) = \( 3^{3} \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((27,a + 4,a^{4} - 2 a^{3} - 3 a^{2} + 5 a + 8,a^{4} - a^{3} - 4 a^{2} + 2 a + 22,a^{2} - a + 7)\) = \( \left(a^{2} - 1\right)^{3} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 27 \) = \( 3^{3} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( 1418630703 a^{4} - 1053833686 a^{3} - 5351126785 a^{2} - 8280788 a + 937167631 \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{2} - 1\right) \) \(3\) \(1\) \(II\) Additive \(1\) \(3\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.1-b consists of curves linked by isogenies of degree3.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.