Properties

Label 5.5.36497.1-27.1-a2
Base field 5.5.36497.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-a^{3}-3a^{2}+2a\right){x}{y}+\left(2a^{4}-3a^{3}-6a^{2}+7a+1\right){y}={x}^{3}+\left(a^{2}-a-2\right){x}^{2}+\left(374a^{4}-252a^{3}-1451a^{2}-59a+277\right){x}+5982a^{4}-3984a^{3}-23258a^{2}-1118a+4479\)
sage: E = EllipticCurve([K([0,2,-3,-1,1]),K([-2,-1,1,0,0]),K([1,7,-6,-3,2]),K([277,-59,-1451,-252,374]),K([4479,-1118,-23258,-3984,5982])])
 
gp: E = ellinit([Polrev([0,2,-3,-1,1]),Polrev([-2,-1,1,0,0]),Polrev([1,7,-6,-3,2]),Polrev([277,-59,-1451,-252,374]),Polrev([4479,-1118,-23258,-3984,5982])], K);
 
magma: E := EllipticCurve([K![0,2,-3,-1,1],K![-2,-1,1,0,0],K![1,7,-6,-3,2],K![277,-59,-1451,-252,374],K![4479,-1118,-23258,-3984,5982]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-a^3-3a^2+a+2)\) = \((a^2-1)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^4-3a^3-7a^2+7a+3)\) = \((a^2-1)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 27 \) = \(3^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 1418630703 a^{4} - 1053833686 a^{3} - 5351126785 a^{2} - 8280788 a + 937167631 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 26.284666151976162946680467136677146359 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.23827296 \)
Analytic order of Ш: \( 9 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-1)\) \(3\) \(1\) \(II\) Additive \(-1\) \(3\) \(3\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 27.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.