Properties

Label 5.5.36497.1-25.1-d2
Base field 5.5.36497.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(2a^{4}-3a^{3}-7a^{2}+7a+3\right){x}{y}+\left(a^{4}-2a^{3}-2a^{2}+5a-1\right){y}={x}^{3}+\left(-a^{2}+1\right){x}^{2}+\left(-8a^{4}-21a^{3}+15a^{2}+40a-7\right){x}-51a^{4}-10a^{3}+111a^{2}-a-9\)
sage: E = EllipticCurve([K([3,7,-7,-3,2]),K([1,0,-1,0,0]),K([-1,5,-2,-2,1]),K([-7,40,15,-21,-8]),K([-9,-1,111,-10,-51])])
 
gp: E = ellinit([Polrev([3,7,-7,-3,2]),Polrev([1,0,-1,0,0]),Polrev([-1,5,-2,-2,1]),Polrev([-7,40,15,-21,-8]),Polrev([-9,-1,111,-10,-51])], K);
 
magma: E := EllipticCurve([K![3,7,-7,-3,2],K![1,0,-1,0,0],K![-1,5,-2,-2,1],K![-7,40,15,-21,-8],K![-9,-1,111,-10,-51]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-2a^2+5a)\) = \((a^4-2a^3-2a^2+5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((10a^4-18a^3-37a^2+42a+16)\) = \((a^4-2a^3-2a^2+5a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 390625 \) = \(25^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1549868991089}{625} a^{4} - \frac{2463604541892}{625} a^{3} - \frac{5660845609864}{625} a^{2} + \frac{5425940335044}{625} a + \frac{3777390596864}{625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{25}{9} a^{4} + \frac{13}{3} a^{3} - \frac{11}{3} a^{2} - \frac{58}{9} a + \frac{5}{9} : -\frac{1336}{27} a^{4} - \frac{172}{9} a^{3} + \frac{971}{9} a^{2} + \frac{406}{27} a - \frac{449}{27} : 1\right)$
Height \(0.40039808757450243528609034976141255487\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a^{3} + a^{2} - 4 a : -a^{4} + a^{2} - a + 3 : 1\right)$ $\left(-2 a^{3} + a^{2} + 4 a - 4 : 3 a^{4} - 4 a^{3} - 9 a^{2} + 9 a + 3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.40039808757450243528609034976141255487 \)
Period: \( 1346.7964560078881861072817568643666563 \)
Tamagawa product: \( 2 \)
Torsion order: \(4\)
Leading coefficient: \( 1.76419015 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-2a^2+5a)\) \(25\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 25.1-d consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.