Properties

Label 5.5.36497.1-25.1-a3
Base field 5.5.36497.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-2a^{3}-3a^{2}+6a+1\right){x}{y}+\left(a^{4}-a^{3}-4a^{2}+3a+2\right){y}={x}^{3}+\left(-a^{4}+2a^{3}+4a^{2}-5a-4\right){x}^{2}+\left(-5a^{4}-14a^{3}-11a^{2}+55a-20\right){x}-63a^{4}-115a^{3}+166a^{2}+193a-100\)
sage: E = EllipticCurve([K([1,6,-3,-2,1]),K([-4,-5,4,2,-1]),K([2,3,-4,-1,1]),K([-20,55,-11,-14,-5]),K([-100,193,166,-115,-63])])
 
gp: E = ellinit([Polrev([1,6,-3,-2,1]),Polrev([-4,-5,4,2,-1]),Polrev([2,3,-4,-1,1]),Polrev([-20,55,-11,-14,-5]),Polrev([-100,193,166,-115,-63])], K);
 
magma: E := EllipticCurve([K![1,6,-3,-2,1],K![-4,-5,4,2,-1],K![2,3,-4,-1,1],K![-20,55,-11,-14,-5],K![-100,193,166,-115,-63]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-2a^2+5a)\) = \((a^4-2a^3-2a^2+5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-17a^4+78a^3+26a^2-333a+5)\) = \((a^4-2a^3-2a^2+5a)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -152587890625 \) = \(-25^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{136402392772743238}{390625} a^{4} + \frac{341339187700279242}{390625} a^{3} + \frac{236740655090238193}{390625} a^{2} - \frac{799831738588792786}{390625} a + \frac{268640638721913956}{390625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{4} a^{4} - \frac{7}{4} a^{3} - 5 a^{2} + \frac{13}{2} a : -\frac{3}{8} a^{4} + \frac{3}{2} a^{3} + \frac{3}{2} a^{2} + \frac{11}{8} a - \frac{37}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 27.648888785496221433508058684067197501 \)
Tamagawa product: \( 8 \)
Torsion order: \(2\)
Leading coefficient: \( 1.15781477 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-2a^2+5a)\) \(25\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 25.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.