Properties

Label 5.5.36497.1-25.1-a2
Base field 5.5.36497.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.36497.1

Generator \(a\), with minimal polynomial \( x^{5} - 2 x^{4} - 3 x^{3} + 5 x^{2} + x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 1, 5, -3, -2, 1]))
 
gp: K = nfinit(Polrev([-1, 1, 5, -3, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 1, 5, -3, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-2a^{3}-3a^{2}+5a+2\right){x}{y}+\left(a^{4}-2a^{3}-3a^{2}+6a+2\right){y}={x}^{3}+\left(a^{4}-a^{3}-5a^{2}+4a+4\right){x}^{2}+\left(20a^{4}-18a^{3}-76a^{2}+10a+20\right){x}+69a^{4}-48a^{3}-268a^{2}-6a+54\)
sage: E = EllipticCurve([K([2,5,-3,-2,1]),K([4,4,-5,-1,1]),K([2,6,-3,-2,1]),K([20,10,-76,-18,20]),K([54,-6,-268,-48,69])])
 
gp: E = ellinit([Polrev([2,5,-3,-2,1]),Polrev([4,4,-5,-1,1]),Polrev([2,6,-3,-2,1]),Polrev([20,10,-76,-18,20]),Polrev([54,-6,-268,-48,69])], K);
 
magma: E := EllipticCurve([K![2,5,-3,-2,1],K![4,4,-5,-1,1],K![2,6,-3,-2,1],K![20,10,-76,-18,20],K![54,-6,-268,-48,69]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4-2a^3-2a^2+5a)\) = \((a^4-2a^3-2a^2+5a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((10a^4-18a^3-37a^2+42a+16)\) = \((a^4-2a^3-2a^2+5a)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 390625 \) = \(25^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1549868991089}{625} a^{4} - \frac{2463604541892}{625} a^{3} - \frac{5660845609864}{625} a^{2} + \frac{5425940335044}{625} a + \frac{3777390596864}{625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(a^{4} - a^{3} - 4 a^{2} : -a^{4} + a^{3} + 4 a^{2} - a - 1 : 1\right)$ $\left(\frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - 3 a - \frac{9}{4} : \frac{1}{2} a^{4} - \frac{3}{2} a^{3} - \frac{15}{8} a^{2} + \frac{17}{4} a + \frac{11}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 884.76444113587908587225787789015032002 \)
Tamagawa product: \( 4 \)
Torsion order: \(4\)
Leading coefficient: \( 1.15781477 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4-2a^3-2a^2+5a)\) \(25\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 25.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.