Properties

Label 5.5.24217.1-61.1-d1
Base field 5.5.24217.1
Conductor norm \( 61 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}-4a^{2}+a+1\right){y}={x}^{3}+\left(-2a^{4}+a^{3}+10a^{2}-2a-5\right){x}^{2}+\left(4a^{4}-a^{3}-18a^{2}+2a+6\right){x}-2a^{4}+8a^{2}-2\)
sage: E = EllipticCurve([K([0,0,0,0,0]),K([-5,-2,10,1,-2]),K([1,1,-4,0,1]),K([6,2,-18,-1,4]),K([-2,0,8,0,-2])])
 
gp: E = ellinit([Polrev([0,0,0,0,0]),Polrev([-5,-2,10,1,-2]),Polrev([1,1,-4,0,1]),Polrev([6,2,-18,-1,4]),Polrev([-2,0,8,0,-2])], K);
 
magma: E := EllipticCurve([K![0,0,0,0,0],K![-5,-2,10,1,-2],K![1,1,-4,0,1],K![6,2,-18,-1,4],K![-2,0,8,0,-2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+9a^2-3)\) = \((-2a^4+9a^2-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 61 \) = \(61\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^4+2a^3+18a^2-5a-7)\) = \((-2a^4+9a^2-3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 61 \) = \(61\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{31227904}{61} a^{4} + \frac{11927552}{61} a^{3} + \frac{152190976}{61} a^{2} - \frac{26697728}{61} a - \frac{86028288}{61} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{4} - 4 a^{2} + a + 2 : -a^{4} + 2 a^{3} + 7 a^{2} - 3 a - 2 : 1\right)$
Height \(0.0027868940302585089569204715278189654096\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.0027868940302585089569204715278189654096 \)
Period: \( 17875.956117414876487291675995317093208 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 1.60066176 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^4+9a^2-3)\) \(61\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 61.1-d consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.