Properties

Label 5.5.24217.1-61.1-b2
Base field 5.5.24217.1
Conductor norm \( 61 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 5.5.24217.1

Generator \(a\), with minimal polynomial \( x^{5} - 5 x^{3} - x^{2} + 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 3, -1, -5, 0, 1]))
 
gp: K = nfinit(Polrev([1, 3, -1, -5, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 3, -1, -5, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(3a^{4}-a^{3}-14a^{2}+3a+6\right){y}={x}^{3}+\left(a^{4}-a^{3}-4a^{2}+4a\right){x}^{2}+\left(-172a^{4}+72a^{3}+808a^{2}-126a-461\right){x}-1112a^{4}+465a^{3}+5243a^{2}-885a-2921\)
sage: E = EllipticCurve([K([0,0,0,0,0]),K([0,4,-4,-1,1]),K([6,3,-14,-1,3]),K([-461,-126,808,72,-172]),K([-2921,-885,5243,465,-1112])])
 
gp: E = ellinit([Polrev([0,0,0,0,0]),Polrev([0,4,-4,-1,1]),Polrev([6,3,-14,-1,3]),Polrev([-461,-126,808,72,-172]),Polrev([-2921,-885,5243,465,-1112])], K);
 
magma: E := EllipticCurve([K![0,0,0,0,0],K![0,4,-4,-1,1],K![6,3,-14,-1,3],K![-461,-126,808,72,-172],K![-2921,-885,5243,465,-1112]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^4+9a^2-3)\) = \((-2a^4+9a^2-3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 61 \) = \(61\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-20a^4-19a^3+80a^2+107a-16)\) = \((-2a^4+9a^2-3)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 844596301 \) = \(61^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{814621975367829286400000}{844596301} a^{4} - \frac{588819537749162764800000}{844596301} a^{3} - \frac{3647503475859398758400000}{844596301} a^{2} + \frac{1821841937334970774327296}{844596301} a + \frac{1127015091876445279977472}{844596301} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.4907255620773520486209704945741469715 \)
Tamagawa product: \( 5 \)
Torsion order: \(1\)
Leading coefficient: \( 1.19742285 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^4+9a^2-3)\) \(61\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 61.1-b consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.