Properties

Base field \(\Q(\zeta_{11})^+\)
Label 5.5.14641.1-43.5-b
Conductor 43.5
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

Elliptic curves in class 43.5-b over \(\Q(\zeta_{11})^+\)

Isogeny class 43.5-b contains 2 curves linked by isogenies of degree 5.

Curve label Weierstrass Coefficients
43.5-b1 \( \bigl[a^{3} + a^{2} - 2 a - 2\) , \( -a^{3} + 4 a\) , \( a^{4} + a^{3} - 3 a^{2} - 2 a\) , \( 172 a^{4} + 21 a^{3} - 667 a^{2} - 358 a + 75\) , \( 2438 a^{4} + 494 a^{3} - 9737 a^{2} - 4830 a + 1787\bigr] \)
43.5-b2 \( \bigl[a^{4} - 4 a^{2} + 2\) , \( a^{4} + a^{3} - 4 a^{2} - 4 a + 3\) , \( a^{4} + a^{3} - 4 a^{2} - 3 a + 3\) , \( -5 a^{4} + a^{3} + 17 a^{2} - 3 a - 7\) , \( -3 a^{4} + a^{3} + 10 a^{2} - 7 a - 11\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph