Properties

Label 5.5.14641.1-43.4-b2
Base field \(\Q(\zeta_{11})^+\)
Conductor norm \( 43 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{4}+a^{3}-4a^{2}-2a+2\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(a^{2}-3\right){x}^{2}+\left(-a^{4}+a^{3}+7a^{2}-5a-6\right){x}+6a^{4}-4a^{3}-24a^{2}+10a+19\)
sage: E = EllipticCurve([K([2,-2,-4,1,1]),K([-3,0,1,0,0]),K([-2,0,1,0,0]),K([-6,-5,7,1,-1]),K([19,10,-24,-4,6])])
 
gp: E = ellinit([Polrev([2,-2,-4,1,1]),Polrev([-3,0,1,0,0]),Polrev([-2,0,1,0,0]),Polrev([-6,-5,7,1,-1]),Polrev([19,10,-24,-4,6])], K);
 
magma: E := EllipticCurve([K![2,-2,-4,1,1],K![-3,0,1,0,0],K![-2,0,1,0,0],K![-6,-5,7,1,-1],K![19,10,-24,-4,6]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^4+a^3-3a^2-3a+2)\) = \((a^4+a^3-3a^2-3a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 43 \) = \(43\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-18a^4+11a^3+32a^2-20a+49)\) = \((a^4+a^3-3a^2-3a+2)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -147008443 \) = \(-43^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2061378462833}{147008443} a^{4} + \frac{147335974626}{147008443} a^{3} + \frac{11271755302501}{147008443} a^{2} - \frac{49254476107}{147008443} a - \frac{14544574161229}{147008443} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a^{2} + 3 : -a^{3} + a^{2} + 3 a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 537.84618223957766282372374176009879432 \)
Tamagawa product: \( 5 \)
Torsion order: \(5\)
Leading coefficient: \( 0.889001954 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^4+a^3-3a^2-3a+2)\) \(43\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 43.4-b consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.