Properties

Base field \(\Q(\zeta_{11})^+\)
Label 5.5.14641.1-43.3-b2
Conductor \((43,-a^{3} - a^{2} + 4 a + 2)\)
Conductor norm \( 43 \)
CM no
base-change no
Q-curve no
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1)
gp (2.8): K = nfinit(a^5 - a^4 - 4*a^3 + 3*a^2 + 3*a - 1);

Weierstrass equation

\( y^2 + \left(a^{4} - 4 a^{2} + a + 3\right) x y + \left(a^{4} - 4 a^{2} + 2\right) y = x^{3} + \left(a^{4} - 5 a^{2} + 3\right) x^{2} + \left(-21 a^{4} - 275 a^{3} + 41 a^{2} + 674 a - 204\right) x - 200 a^{4} - 2874 a^{3} + 60 a^{2} + 6329 a - 1829 \)
magma: E := ChangeRing(EllipticCurve([a^4 - 4*a^2 + a + 3, a^4 - 5*a^2 + 3, a^4 - 4*a^2 + 2, -21*a^4 - 275*a^3 + 41*a^2 + 674*a - 204, -200*a^4 - 2874*a^3 + 60*a^2 + 6329*a - 1829]),K);
sage: E = EllipticCurve(K, [a^4 - 4*a^2 + a + 3, a^4 - 5*a^2 + 3, a^4 - 4*a^2 + 2, -21*a^4 - 275*a^3 + 41*a^2 + 674*a - 204, -200*a^4 - 2874*a^3 + 60*a^2 + 6329*a - 1829])
gp (2.8): E = ellinit([a^4 - 4*a^2 + a + 3, a^4 - 5*a^2 + 3, a^4 - 4*a^2 + 2, -21*a^4 - 275*a^3 + 41*a^2 + 674*a - 204, -200*a^4 - 2874*a^3 + 60*a^2 + 6329*a - 1829],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((43,-a^{3} - a^{2} + 4 a + 2)\) = \( \left(a^{3} + a^{2} - 4 a - 2\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 43 \) = \( 43 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((43,a + 14,a^{2} + 19,a^{3} - 3 a + 36,a^{4} - 4 a^{2} + 36)\) = \( \left(a^{3} + a^{2} - 4 a - 2\right) \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 43 \) = \( 43 \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( -\frac{1066176219167207113178088}{43} a^{4} + \frac{2860188915894901647487633}{43} a^{3} - \frac{547882844077769355159450}{43} a^{2} - 52956224025397325384387 a + \frac{633565967983653513966306}{43} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: Trivial
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a^{3} + a^{2} - 4 a - 2\right) \) \(43\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 43.3-b consists of curves linked by isogenies of degree5.

Base change

This curve is not the base-change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.