Properties

Label 5.5.14641.1-23.2-a4
Base field \(\Q(\zeta_{11})^+\)
Conductor norm \( 23 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{11})^+\)

Generator \(a\), with minimal polynomial \( x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 3, -4, -1, 1]))
 
gp: K = nfinit(Polrev([-1, 3, 3, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 3, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-3a-1\right){x}{y}+\left(a^{4}-4a^{2}+a+3\right){y}={x}^{3}+\left(-a^{4}-a^{3}+5a^{2}+2a-3\right){x}^{2}+\left(-4278a^{4}+3350a^{3}+17601a^{2}-8315a-15116\right){x}-209580a^{4}+154663a^{3}+874447a^{2}-386208a-735950\)
sage: E = EllipticCurve([K([-1,-3,1,1,0]),K([-3,2,5,-1,-1]),K([3,1,-4,0,1]),K([-15116,-8315,17601,3350,-4278]),K([-735950,-386208,874447,154663,-209580])])
 
gp: E = ellinit([Polrev([-1,-3,1,1,0]),Polrev([-3,2,5,-1,-1]),Polrev([3,1,-4,0,1]),Polrev([-15116,-8315,17601,3350,-4278]),Polrev([-735950,-386208,874447,154663,-209580])], K);
 
magma: E := EllipticCurve([K![-1,-3,1,1,0],K![-3,2,5,-1,-1],K![3,1,-4,0,1],K![-15116,-8315,17601,3350,-4278],K![-735950,-386208,874447,154663,-209580]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^4+3a^2+a-2)\) = \((-a^4+3a^2+a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 23 \) = \(23\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2a^3+3a^2+5a-4)\) = \((-a^4+3a^2+a-2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -529 \) = \(-23^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1191520348048782872032188672054705939}{529} a^{4} + \frac{2181471229802177623677475441208246860}{529} a^{3} + \frac{2953649593612105912153638037483875591}{529} a^{2} - \frac{6028541812813127685001791606278142264}{529} a + \frac{1434132506958014181934752744337840202}{529} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{19}{2} a^{4} + \frac{43}{4} a^{3} + \frac{241}{4} a^{2} - \frac{79}{2} a - 66 : -\frac{191}{8} a^{4} + \frac{123}{8} a^{3} + \frac{625}{8} a^{2} - \frac{141}{4} a - \frac{489}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.31780034143956915037034160225321732999 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.820765345 \)
Analytic order of Ш: \( 625 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^4+3a^2+a-2)\) \(23\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 23.2-a consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.