Properties

Label 4.4.9909.1-25.1-b1
Base field 4.4.9909.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 3 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-5a-1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{3}-4a-1\right){x}^{2}+\left(5a^{3}-2a^{2}-20a-6\right){x}-a^{3}-a^{2}+7a+12\)
sage: E = EllipticCurve([K([-1,-5,0,1]),K([-1,-4,0,1]),K([-2,-1,1,0]),K([-6,-20,-2,5]),K([12,7,-1,-1])])
 
gp: E = ellinit([Polrev([-1,-5,0,1]),Polrev([-1,-4,0,1]),Polrev([-2,-1,1,0]),Polrev([-6,-20,-2,5]),Polrev([12,7,-1,-1])], K);
 
magma: E := EllipticCurve([K![-1,-5,0,1],K![-1,-4,0,1],K![-2,-1,1,0],K![-6,-20,-2,5],K![12,7,-1,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-2a^2-4a+5)\) = \((-a^3+2a^2+3a-4)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3-3a^2-7a-2)\) = \((-a^3+2a^2+3a-4)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 625 \) = \(5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 4036500 a^{3} - 7580142 a^{2} - 9865638 a + 6254145 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3 a^{2} + 5 a : -8 a^{3} - 22 a^{2} - 2 a + 18 : 1\right)$
Height \(0.070938334656423382592893651979731163225\)
Torsion structure: \(\Z/3\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{2}{3} a^{3} + \frac{2}{3} a^{2} + 3 a : \frac{1}{3} a^{3} - \frac{4}{3} a^{2} + \frac{1}{3} a + 5 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.070938334656423382592893651979731163225 \)
Period: \( 2779.6857804987638503309888109580588007 \)
Tamagawa product: \( 3 \)
Torsion order: \(3\)
Leading coefficient: \( 2.64119530524228 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+2a^2+3a-4)\) \(5\) \(3\) \(IV\) Additive \(-1\) \(2\) \(4\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 25.1-b consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.