Properties

Label 4.4.9909.1-21.1-d4
Base field 4.4.9909.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{3}-a^{2}-5a\right){x}^{2}+\left(-34a^{3}+6a^{2}+144a-69\right){x}-240a^{3}+410a^{2}+1244a-706\)
sage: E = EllipticCurve([K([2,-3,-1,1]),K([0,-5,-1,1]),K([1,1,0,0]),K([-69,144,6,-34]),K([-706,1244,410,-240])])
 
gp: E = ellinit([Polrev([2,-3,-1,1]),Polrev([0,-5,-1,1]),Polrev([1,1,0,0]),Polrev([-69,144,6,-34]),Polrev([-706,1244,410,-240])], K);
 
magma: E := EllipticCurve([K![2,-3,-1,1],K![0,-5,-1,1],K![1,1,0,0],K![-69,144,6,-34],K![-706,1244,410,-240]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-3)\) = \((-a^3+a^2+4a)\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-2487a^3+2531a^2+9684a-1314)\) = \((-a^3+a^2+4a)^{2}\cdot(a^3-a^2-4a+1)^{16}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 299096375126409 \) = \(3^{2}\cdot7^{16}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{3075730896093395126238965002}{99698791708803} a^{3} - \frac{3714007662409537173380188813}{99698791708803} a^{2} - \frac{4656548508714567651606714255}{33232930569601} a + \frac{2547146210989604914629326570}{33232930569601} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{81}{25} a^{3} - \frac{99}{25} a^{2} - \frac{73}{5} a + \frac{442}{25} : -\frac{3467}{125} a^{3} + \frac{4518}{125} a^{2} + \frac{2901}{25} a - \frac{11619}{125} : 1\right)$
Height \(3.3091189068442430371077242172717261987\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a^{3} - a^{2} - 10 a + 7 : -6 a^{3} + 6 a^{2} + 20 a - 12 : 1\right)$ $\left(-\frac{5}{4} a^{3} - \frac{3}{2} a^{2} + \frac{23}{4} a - \frac{9}{4} : \frac{45}{8} a^{3} - 3 a^{2} - \frac{61}{4} a + 7 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 3.3091189068442430371077242172717261987 \)
Period: \( 22.084485286496948867431462576997268447 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 2.93659957703088 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((a^3-a^2-4a+1)\) \(7\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 21.1-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.