Properties

Label 4.4.9909.1-21.1-d3
Base field 4.4.9909.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+2\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{3}-a^{2}-5a\right){x}^{2}+\left(-84a^{3}+146a^{2}+299a-174\right){x}-188a^{3}+858a^{2}+1498a-961\)
sage: E = EllipticCurve([K([2,-3,-1,1]),K([0,-5,-1,1]),K([1,1,0,0]),K([-174,299,146,-84]),K([-961,1498,858,-188])])
 
gp: E = ellinit([Polrev([2,-3,-1,1]),Polrev([0,-5,-1,1]),Polrev([1,1,0,0]),Polrev([-174,299,146,-84]),Polrev([-961,1498,858,-188])], K);
 
magma: E := EllipticCurve([K![2,-3,-1,1],K![0,-5,-1,1],K![1,1,0,0],K![-174,299,146,-84],K![-961,1498,858,-188]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-3)\) = \((-a^3+a^2+4a)\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-7703906a^3+9164061a^2+34244423a-23060691)\) = \((-a^3+a^2+4a)\cdot(a^3-a^2-4a+1)^{32}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 3313283022731761938915897603 \) = \(3\cdot7^{32}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{8726799587448504883954432291309058}{3313283022731761938915897603} a^{3} + \frac{3512609295216958802166282509619697}{1104427674243920646305299201} a^{2} + \frac{13211649577996599292098856645855219}{1104427674243920646305299201} a - \frac{7226027092698629340082787287567899}{1104427674243920646305299201} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{2468608}{621075} a^{3} - \frac{5032882}{621075} a^{2} - \frac{759858}{41405} a + \frac{4240877}{207025} : -\frac{2293749282}{94196375} a^{3} + \frac{2929287028}{94196375} a^{2} + \frac{6141520538}{56517825} a - \frac{8340027949}{94196375} : 1\right)$
Height \(6.6182378136884860742154484345434523973\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{11}{4} a^{3} - \frac{11}{2} a^{2} - \frac{57}{4} a + \frac{39}{4} : -\frac{19}{8} a^{3} + 7 a^{2} + \frac{67}{4} a - 11 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 6.6182378136884860742154484345434523973 \)
Period: \( 1.3802803304060593042144664110623292779 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.93659957703088 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a^3-a^2-4a+1)\) \(7\) \(2\) \(I_{32}\) Non-split multiplicative \(1\) \(1\) \(32\) \(32\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 21.1-d consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.