Properties

Label 4.4.9909.1-21.1-c1
Base field 4.4.9909.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a^{3}-5a-2\right){y}={x}^{3}+\left(a^{2}-a-4\right){x}^{2}+\left(247a^{3}-369a^{2}-783a+29\right){x}-2748a^{3}+5314a^{2}+6231a-5064\)
sage: E = EllipticCurve([K([0,1,0,0]),K([-4,-1,1,0]),K([-2,-5,0,1]),K([29,-783,-369,247]),K([-5064,6231,5314,-2748])])
 
gp: E = ellinit([Polrev([0,1,0,0]),Polrev([-4,-1,1,0]),Polrev([-2,-5,0,1]),Polrev([29,-783,-369,247]),Polrev([-5064,6231,5314,-2748])], K);
 
magma: E := EllipticCurve([K![0,1,0,0],K![-4,-1,1,0],K![-2,-5,0,1],K![29,-783,-369,247],K![-5064,6231,5314,-2748]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-3)\) = \((-a^3+a^2+4a)\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-81a^3+81a^2+324a-81)\) = \((-a^3+a^2+4a)^{16}\cdot(a^3-a^2-4a+1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 301327047 \) = \(3^{16}\cdot7\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2038984884625177049}{189} a^{3} - \frac{7386347250266428568}{567} a^{2} - \frac{9260854421312515172}{189} a + \frac{15197146687274038624}{567} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{54869}{24843} a^{3} + \frac{119432}{24843} a^{2} + \frac{18750}{8281} a - \frac{66667}{8281} : -\frac{412745}{2260713} a^{3} + \frac{23843948}{2260713} a^{2} - \frac{24508300}{2260713} a - \frac{22502110}{753571} : 1\right)$
Height \(2.0496783362641553085764980078468149718\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(8 a^{3} - \frac{45}{4} a^{2} - 27 a - 2 : \frac{41}{8} a^{3} - \frac{21}{2} a^{2} - \frac{17}{2} a + 13 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.0496783362641553085764980078468149718 \)
Period: \( 17.697377562101982712914422335883326535 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 2.91520902703565 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)
\((a^3-a^2-4a+1)\) \(7\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 21.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.