Properties

Label 4.4.9909.1-21.1-a6
Base field 4.4.9909.1
Conductor norm \( 21 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{3}-a^{2}-5a\right){x}^{2}+\left(-784a^{3}-509a^{2}+1519a-616\right){x}+18547a^{3}+24195a^{2}-19665a+1670\)
sage: E = EllipticCurve([K([1,1,0,0]),K([0,-5,-1,1]),K([-3,0,1,0]),K([-616,1519,-509,-784]),K([1670,-19665,24195,18547])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([0,-5,-1,1]),Polrev([-3,0,1,0]),Polrev([-616,1519,-509,-784]),Polrev([1670,-19665,24195,18547])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![0,-5,-1,1],K![-3,0,1,0],K![-616,1519,-509,-784],K![1670,-19665,24195,18547]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a-3)\) = \((-a^3+a^2+4a)\cdot(a^3-a^2-4a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 21 \) = \(3\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-39a^3+24a^2+152a-39)\) = \((-a^3+a^2+4a)\cdot(a^3-a^2-4a+1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 17294403 \) = \(3\cdot7^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{73204218707003465754418530011323778}{17294403} a^{3} - \frac{29465194712745950920219395499999665}{5764801} a^{2} - \frac{110828615043320066217968092545904435}{5764801} a + \frac{60623589840441817561364743725976875}{5764801} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{57139}{8281} a^{3} - \frac{83626}{24843} a^{2} - \frac{240631}{8281} a + \frac{46531}{8281} : -\frac{8297906}{753571} a^{3} - \frac{59118278}{2260713} a^{2} + \frac{9065054}{2260713} a + \frac{20202449}{753571} : 1\right)$
Height \(2.1281686626611514650354227555415344197\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(7 a^{3} + \frac{3}{4} a^{2} - \frac{35}{2} a + \frac{55}{4} : -\frac{31}{8} a^{3} - \frac{105}{8} a^{2} - \frac{69}{8} a + \frac{41}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.1281686626611514650354227555415344197 \)
Period: \( 87.105030326823751242452985106402193751 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.72446898122785 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((a^3-a^2-4a+1)\) \(7\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 21.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.