Properties

Label 4.4.9909.1-15.1-a4
Base field 4.4.9909.1
Conductor norm \( 15 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9909.1

Generator \(a\), with minimal polynomial \( x^{4} - 6 x^{2} - 3 x + 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([3, -3, -6, 0, 1]))
 
gp: K = nfinit(Polrev([3, -3, -6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3, -3, -6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-3a+1\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(-a^{2}+2a+4\right){x}^{2}+\left(-26a^{3}+31a^{2}+121a-64\right){x}-120a^{3}+147a^{2}+543a-302\)
sage: E = EllipticCurve([K([1,-3,-1,1]),K([4,2,-1,0]),K([-3,0,1,0]),K([-64,121,31,-26]),K([-302,543,147,-120])])
 
gp: E = ellinit([Polrev([1,-3,-1,1]),Polrev([4,2,-1,0]),Polrev([-3,0,1,0]),Polrev([-64,121,31,-26]),Polrev([-302,543,147,-120])], K);
 
magma: E := EllipticCurve([K![1,-3,-1,1],K![4,2,-1,0],K![-3,0,1,0],K![-64,121,31,-26],K![-302,543,147,-120]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-a^2-5a)\) = \((-a^3+a^2+4a)\cdot(-a^3+2a^2+3a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 15 \) = \(3\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-17a^3-23a^2+150a+105)\) = \((-a^3+a^2+4a)^{2}\cdot(-a^3+2a^2+3a-4)^{10}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 87890625 \) = \(3^{2}\cdot5^{10}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{422494591886387}{29296875} a^{3} + \frac{1087832991903677}{29296875} a^{2} + \frac{19383695526463}{1953125} a - \frac{160867452574272}{9765625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(3 a^{3} - 3 a^{2} - 15 a + 4 : -2 a^{3} + 3 a^{2} + 9 a - 5 : 1\right)$ $\left(-a^{3} + a^{2} + 5 a - 4 : 2 a^{3} - 3 a^{2} - 7 a + 5 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 489.39198121746428174130331386260821138 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 1.22908507090213 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^3+a^2+4a)\) \(3\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a^3+2a^2+3a-4)\) \(5\) \(2\) \(I_{10}\) Non-split multiplicative \(1\) \(1\) \(10\) \(10\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 15.1-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.