Properties

Label 4.4.9792.1-36.1-d2
Base field 4.4.9792.1
Conductor norm \( 36 \)
CM no
Base change no
Q-curve no
Torsion order \( 5 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9792.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 2 x + 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, 2, -7, -2, 1]))
 
gp: K = nfinit(Polrev([7, 2, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, 2, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a^{2}-2a-4\right){x}^{2}+\left(-2a^{3}+5a^{2}+8a-7\right){x}+a^{3}-11a^{2}-6a+16\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-4,-2,1,0]),K([0,0,0,0]),K([-7,8,5,-2]),K([16,-6,-11,1])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-4,-2,1,0]),Polrev([0,0,0,0]),Polrev([-7,8,5,-2]),Polrev([16,-6,-11,1])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-4,-2,1,0],K![0,0,0,0],K![-7,8,5,-2],K![16,-6,-11,1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-1)\) = \((a^3-3a^2-3a+4)\cdot(a^3-3a^2-2a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 36 \) = \(4\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((9a^3-27a^2-45a+72)\) = \((a^3-3a^2-3a+4)\cdot(a^3-3a^2-2a+5)^{5}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -236196 \) = \(-4\cdot9^{5}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{7769042107}{27} a^{3} - \frac{4821837803}{18} a^{2} - \frac{124228493479}{54} a - \frac{101732420597}{54} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{2417}{1681} a^{3} + \frac{9978}{1681} a^{2} + \frac{7734}{1681} a - \frac{13976}{1681} : -\frac{23586}{68921} a^{3} - \frac{606739}{68921} a^{2} - \frac{151310}{68921} a + \frac{767595}{68921} : 1\right)$
Height \(1.7434957495724121427232140082824254313\)
Torsion structure: \(\Z/5\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(a^{3} - 3 a^{2} - 3 a + 7 : 3 a^{3} - 11 a^{2} - 10 a + 18 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.7434957495724121427232140082824254313 \)
Period: \( 226.51641703827709526328868087373898421 \)
Tamagawa product: \( 5 \)  =  \(1\cdot5\)
Torsion order: \(5\)
Leading coefficient: \( 3.19282313038363 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a^2-3a+4)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((a^3-3a^2-2a+5)\) \(9\) \(5\) \(I_{5}\) Split multiplicative \(-1\) \(1\) \(5\) \(5\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 36.1-d consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.