Properties

Label 4.4.9792.1-36.1-d1
Base field 4.4.9792.1
Conductor norm \( 36 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.9792.1

Generator \(a\), with minimal polynomial \( x^{4} - 2 x^{3} - 7 x^{2} + 2 x + 7 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([7, 2, -7, -2, 1]))
 
gp: K = nfinit(Polrev([7, 2, -7, -2, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![7, 2, -7, -2, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+\left(a^{3}-3a^{2}-2a+5\right){x}^{2}+\left(-1420a^{3}+1299a^{2}+11345a+9299\right){x}-199304a^{3}+185398a^{2}+1593168a+1304734\)
sage: E = EllipticCurve([K([1,0,0,0]),K([5,-2,-3,1]),K([0,0,0,0]),K([9299,11345,1299,-1420]),K([1304734,1593168,185398,-199304])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([5,-2,-3,1]),Polrev([0,0,0,0]),Polrev([9299,11345,1299,-1420]),Polrev([1304734,1593168,185398,-199304])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![5,-2,-3,1],K![0,0,0,0],K![9299,11345,1299,-1420],K![1304734,1593168,185398,-199304]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-1)\) = \((a^3-3a^2-3a+4)\cdot(a^3-3a^2-2a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 36 \) = \(4\cdot9\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-4a^3+8a^2+24a-4)\) = \((a^3-3a^2-3a+4)^{5}\cdot(a^3-3a^2-2a+5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -9216 \) = \(-4^{5}\cdot9\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2240392722766771819}{8} a^{3} - \frac{5522297380891621979}{12} a^{2} + \frac{3630089700724133759}{12} a + \frac{13074436924466614051}{24} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{3701481773}{87146402} a^{3} + \frac{7202413181}{87146402} a^{2} + \frac{18079850910}{43573201} a + \frac{3768640843}{12449486} : -\frac{2179800700292843}{1150506799204} a^{3} + \frac{814529287533821}{1150506799204} a^{2} + \frac{14184526542859451}{1150506799204} a + \frac{866171028728793}{82179057086} : 1\right)$
Height \(8.7174787478620607136160700414121271567\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 8.7174787478620607136160700414121271567 \)
Period: \( 0.36242626726124335242126188939798237474 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 3.19282313038363 \)
Analytic order of Ш: \( 25 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a^2-3a+4)\) \(4\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((a^3-3a^2-2a+5)\) \(9\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5.
Its isogeny class 36.1-d consists of curves linked by isogenies of degree 5.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.