Properties

Label 4.4.725.1-41.2-a1
Base field 4.4.725.1
Conductor norm \( 41 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-a^{2}-a+2\right){x}{y}+{y}={x}^{3}+\left(a^{3}-4a\right){x}^{2}+\left(-135a^{3}+127a^{2}+515a-400\right){x}-1476a^{3}+1408a^{2}+5442a-4190\)
sage: E = EllipticCurve([K([2,-1,-1,1]),K([0,-4,0,1]),K([1,0,0,0]),K([-400,515,127,-135]),K([-4190,5442,1408,-1476])])
 
gp: E = ellinit([Polrev([2,-1,-1,1]),Polrev([0,-4,0,1]),Polrev([1,0,0,0]),Polrev([-400,515,127,-135]),Polrev([-4190,5442,1408,-1476])], K);
 
magma: E := EllipticCurve([K![2,-1,-1,1],K![0,-4,0,1],K![1,0,0,0],K![-400,515,127,-135],K![-4190,5442,1408,-1476]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3-3a^2-a+4)\) = \((a^3-3a^2-a+4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 41 \) = \(41\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((638a^3-310a^2-2180a-305)\) = \((a^3-3a^2-a+4)^{7}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 194754273881 \) = \(41^{7}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{225051081609253272495724}{194754273881} a^{3} - \frac{374403622356224971123359}{194754273881} a^{2} - \frac{485460769246665079877472}{194754273881} a + \frac{590693477122513336036940}{194754273881} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-9 a^{3} + 18 a^{2} + 11 a - 15 : 3 a^{3} - 5 a^{2} - 13 a + 11 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.4216867878902763685249002947156555264 \)
Tamagawa product: \( 1 \)
Torsion order: \(2\)
Leading coefficient: \( 0.646801491704872 \)
Analytic order of Ш: \( 49 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-3a^2-a+4)\) \(41\) \(1\) \(I_{7}\) Non-split multiplicative \(1\) \(1\) \(7\) \(7\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 7 and 14.
Its isogeny class 41.2-a consists of curves linked by isogenies of degrees dividing 14.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.