Properties

Label 4.4.725.1-25.1-a1
Base field 4.4.725.1
Conductor norm \( 25 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.725.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 3 x^{2} + x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, 1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-6039a^{3}+8759a^{2}+13737a-12538\right){x}-299268a^{3}+440180a^{2}+685551a-625284\)
sage: E = EllipticCurve([K([0,0,0,0]),K([1,-1,0,0]),K([-1,-1,1,0]),K([-12538,13737,8759,-6039]),K([-625284,685551,440180,-299268])])
 
gp: E = ellinit([Polrev([0,0,0,0]),Polrev([1,-1,0,0]),Polrev([-1,-1,1,0]),Polrev([-12538,13737,8759,-6039]),Polrev([-625284,685551,440180,-299268])], K);
 
magma: E := EllipticCurve([K![0,0,0,0],K![1,-1,0,0],K![-1,-1,1,0],K![-12538,13737,8759,-6039],K![-625284,685551,440180,-299268]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a^3+2a^2+4a-1)\) = \((-2a^3+2a^2+4a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 25 \) = \(25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-31250a^3+31250a^2+62500a-15625)\) = \((-2a^3+2a^2+4a-1)^{13}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1490116119384765625 \) = \(25^{13}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{9401666179616768}{78125} a^{3} + \frac{9401666179616768}{78125} a^{2} + \frac{18803332359233536}{78125} a - \frac{15212221580529664}{78125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.090493666099753971099814291665807220455 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 0.567983715209496 \)
Analytic order of Ш: \( 169 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^3+2a^2+4a-1)\) \(25\) \(1\) \(I_{13}\) Non-split multiplicative \(1\) \(1\) \(13\) \(13\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(13\) 13B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 13.
Its isogeny class 25.1-a consists of curves linked by isogenies of degree 13.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.