Properties

Label 4.4.7225.1-236.3-a2
Base field \(\Q(\sqrt{5}, \sqrt{17})\)
Conductor norm \( 236 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}, \sqrt{17})\)

Generator \(a\), with minimal polynomial \( x^{4} - 11 x^{2} + 9 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([9, 0, -11, 0, 1]))
 
gp: K = nfinit(Polrev([9, 0, -11, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 0, -11, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{6}a^{3}+\frac{1}{2}a^{2}+\frac{11}{6}a-2\right){x}{y}+\left(-\frac{1}{6}a^{3}+\frac{7}{3}a+\frac{3}{2}\right){y}={x}^{3}+\left(\frac{1}{6}a^{3}-\frac{1}{2}a^{2}-\frac{11}{6}a+3\right){x}^{2}+\left(\frac{2}{3}a^{3}-a^{2}-\frac{22}{3}a+8\right){x}-a^{3}-6a^{2}-6a+9\)
sage: E = EllipticCurve([K([-2,11/6,1/2,-1/6]),K([3,-11/6,-1/2,1/6]),K([3/2,7/3,0,-1/6]),K([8,-22/3,-1,2/3]),K([9,-6,-6,-1])])
 
gp: E = ellinit([Polrev([-2,11/6,1/2,-1/6]),Polrev([3,-11/6,-1/2,1/6]),Polrev([3/2,7/3,0,-1/6]),Polrev([8,-22/3,-1,2/3]),Polrev([9,-6,-6,-1])], K);
 
magma: E := EllipticCurve([K![-2,11/6,1/2,-1/6],K![3,-11/6,-1/2,1/6],K![3/2,7/3,0,-1/6],K![8,-22/3,-1,2/3],K![9,-6,-6,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((1/2a^3-3a+1/2)\) = \((1/6a^3-1/2a^2-5/6a+2)\cdot(1/2a^2+1/2a-11/2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 236 \) = \(4\cdot59\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((28/3a^3-1/2a^2-715/6a-63/2)\) = \((1/6a^3-1/2a^2-5/6a+2)\cdot(1/2a^2+1/2a-11/2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 48469444 \) = \(4\cdot59^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{35867214803}{48469444} a^{3} - \frac{15888032143}{48469444} a^{2} - \frac{455784216367}{48469444} a + \frac{114223634126}{12117361} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{1}{24} a^{3} + \frac{3}{8} a^{2} + \frac{29}{24} a - 2 : -\frac{5}{16} a^{3} - \frac{1}{8} a^{2} + \frac{3}{2} a - \frac{45}{16} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 271.37308184670033938491768186645411095 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2^{2}\)
Torsion order: \(2\)
Leading coefficient: \( 3.19262449231412 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/6a^3-1/2a^2-5/6a+2)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((1/2a^2+1/2a-11/2)\) \(59\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 236.3-a consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.